top of page
couverture.jpg

Votre libraire peut certainement commander le livre !

Sinon, cliquez sur un des boutons ci-dessous:

couverture.jpg
couverture.jpg
couverture.jpg
couverture.jpg
couverture.jpg
couverture.jpg

Références et notes du livre

1. BRADBURY J. W., et VEHRENCAMP S. L., Principles of Animal Communication, Sinauer, 2011.

2. LORENZ K., « Der Kumpan in der Umwelt des Vogels », J. Orni- tho.l, vol. 83, 1935, p. 137-289.

3. VON FRISCH K., The Dance Language and Orientation of Bees, Harvard Univ. Press, 1967.

4. TINBERGENN.,«Onaimsandmethodsofethology»,ZeitTierpsy- chol, vol. 20, 1963, p. 410-433.

5. BATESON P., et LALAND K. N., «Tinbergen’s four questions: an appreciation and an update », Trends Ecol. Evol., vol. 28, 2013, p. 712-718.

6. Pour approfondir vos connaissances en physique des ondes sonores, je vous conseille la lecture des chapitres suivants, tous écrits pour la bioacoustique : LARSEN O. N., « To shout or to whisper ? Strageties for encoding public and private information in sound signals », dans AUBIN T. et MATHEVON N. (dir.), Coding strategies in vertebrate acoustic communication, Springer, 2020, p. 11-44; LARSEN O. N., et WAHLBERG M., «Sound and sound sources», dans BROWN C. et RIEDE T. (dir.), Comparative Bioacoustics: An Overview, Bentham Science, 2017, p. 3-62 ; WAHLBERG M., et LARSEN O. N., « Propagation of sound », dans ibid., p. 63-121.

7. MARLER P., et SLABBEKOORN H., Nature’s Music: The Science of Birdsong, Elsevier, 2004.

8. DRAGANOIUT.I.,MATHEVONN.,etal,«Songstabilityandneigh- bour recognition in a migratory songbird, the black redstart », Behaviour, vol. 151, 2014, p. 435-453. Il y a de nombreux autres articles trai- tant du dear enemy effect ; voir par exemple : BRIEFER E., RYBAK F., et AUBIN T., «When to be a dear enemy: flexible acoustic relationships of neighbouring skylarks, Alauda arvensis », Anim. Behav., vol. 76, 2008, p. 1319-1325; et BRIEFER E., RYBAK F., LEHONGRE K., et AUBIN T., « How to identify dear enemies : the group signature in the complex song of the skylark Alauda arvensis », J. Exp. Biol., vol. 211, 2008, p. 317-326.

9. AUBIN T., SEBE F., et al., « How a simple and stereotyped acoustic signal transmits individual information: the song of the White-browed Warbler Basileuterus leucoblepharus », An Acad. Bras. Cienc., vol. 76, 2004, p. 335-344.

10. MATHEVON N., BOSCOLO D., et al., « Singing in the rain forest : how a tropical bird song transfers information», PLoS ONE, vol. 3, 2008, e1580.

11. MARLER P., et SLABBEKOORN H., Nature’s Music, ouvr. cité, p. 178-205.

12. BRÉMONDJ.-C.,«Specificvalueofsyntaxintheterritorialdefense signal of the troglodyte (Troglodytes troglodytes)», Behaviour, vol. 30, 1968, p. 66-75 ; id., « Role of the carrier frequency in the territorial songs of oscines », Ethology, vol. 73, 1968, p. 128-135 ; id., « Acoustic competition between the song of the wren (Troglodytes troglodytes) and the songs of other species », Behaviour, vol. 65, 1978, p. 89-98.

13. KREUTZER M., « Stéréotopie et variations dans les chants de proclamation territoriale chez le Troglodyte (Troglodytes troglodytes) », Rev Comport Anim, vol. 8, no 2, 1974, p. 70-286.

14. MATHEVON N., et AUBIN T., « Reaction to conspecific degraded song by the wren Troglodytes troglodytes : Territorial response and choice of song post », Behav Proc, vol. 39, 1997, p. 77-84.

15. MATHEVONN.,AUBINT.,etDABELSTEENT.,«Songdegradation during propagation : importance of song post for the wren troglodytes troglodytes », Ethology, vol. 102, 1996, p. 397-412.

16. MATHEVON N., et al., « Are high perches in the blackcap Sylvia atricapilla song or listening posts ? A sound transmission study », JASA, vol. 117, 2005, p. 442-449.

17. MATHEVON N., et AUBIN T., « Sound-based species-specific recognition in the blackcap sylvia atricapilla shows high tolerance to signal modifications », Behaviour, vol. 138, 2001, p. 511-524.

18. EY E., et FISCHER J., « The “acoustic adaptation hypothesis”– a review of the evidence from birds, anurans and mammals », Bioacoustics, vol. 19, 2009, p. 21-48.

19. BALAKRISHNAN R., « Behavioral ecology of insect acoustic com- munication », dans POLLACK G. S., MASON A. C., POPPER A., FAY R. R., Insect hearing, Springer, 2016, p. 49-80.

20. SHANNON C. E., et WEAVER W., The mathematical theory of communication, Univ Illinois Press, 1949.

21. MATHEVONN.,etAUBINT.,«Acousticcodingstrategiesthrough the lens of the mathematical theory of communication », dans AUBIN T., et MATHEVON N. (dir.), Coding strategies in vertebrate acoustic communi- cation, ouvr. cité, p. 1-10.

22. CHARRIER I., MATHEVON N., JOUVENTIN P., et AUBIN T., « Acoustic communication in a black headed gull colony : how do chicks identify their parents ? », Ethology, vol. 107, 2001, p. 961-974.

23. AUBIN T., et JOUVENTIN P., «How to vocally identify kin in a crowd : The penguin model », Adv Stud Behav, vol. 31, 2002, p. 243-277. 24. AUBINT.,etJOUVENTINP.,«Cocktail-partyeffectinkingpenguin

colonies », Proc R Soc Lond B, vol. 265, 1998, p. 1665-1673.
25. LENGAGNE T., AUBIN T., LAUGA J., et JOUVENTIN P., « How do king penguins (Aptenodytes patagonicus apply the mathematical theory of information to communicate in windy conditions ? », Proc R Soc Lond

B, vol. 266, 1999, p. 1623-1628.
26. JOUVENTIN P., AUBIN T., et LENGAGNE T., «Finding a parent

in a king penguin colony : the acoustic system of individual recognition », Anim Behav, vol. 57, 1999, p. 1175-1183.

27. AUBIN T., JOUVENTIN P., et HILDEBRAND C., « Penguins use the two–voice system to recognize each other », Proc R Soc Lond B, vol. 267, 2000, p. 1081-1087.

28. GOMEZ-BAHAMONV.,TUEROD.T.,etal.,«Sonationsinmigratory and non-migratory fork-tailed flycatchers (Tyrannus savana)», Integr Comp Biol, in press.

29. ROBISSONP.,AUBINT.,etBRÉMONDJ.-C.,«Individualityinthe voice of the Emperor Penguin Aptenodytes forsteri : adaptation to a noisy environment », Ethology, vol. 94, 1993, p. 279-290.

30. AUBINT.,etJOUVENTINP.,«Cocktail-partyeffectinkingpenguin colonies », art. cité.

31. JOUVENTIN P., et AUBIN T., «Acoustic systems are adapted to breeding ecologies: individual recognition in nesting penguins», Anim Behav, vol. 64, 2002, p. 747-757.

32. AUBIN T., et JOUVENTIN P., « Localisation of an acoustic signal in a noisy environment : the display call of the king penguin Aptenodytes patagonicus », J Exp Biol, vol. 205, 2002, p. 3793-3798.

33. LOESCHE P., HIGGINS B. J., STODDARD P. K., et BEECHER M. D., « Signature versus perceptual adaptations for individual vocal recognition in swallows», Behaviour, vol. 118, 1991, p. 15-25; MEDVIN M. B., STODDARD P. K., et BEECHER M. D., « Signals for parent offspring recogni- tion : strong sib sib call similarity in cliff swallows but not barn swallows », Ethology, vol. 90, 1992, p. 17-28 ; MEDVIN M. B., STODDARD P. K., et BEECHER M. D., « Signals for parent-offspring recognition : a comparative analysis of the begging calls of cliff swallows and barn swallows », Anim Behav, vol. 45, 1993, p. 841-850.

34. CHARRIER I., «Mother-offspring vocal recognition and social system in pinnipeds », dans AUBIN T. et MATHEVON N. (dir.), Coding strategies in vertebrate acoustic communication, ouvr. cité, p. 231-246.

35. CHARRIER I., «Mother-offspring vocal recognition and social system in pinnipeds », dans Coding strategies in vertebrate acoustic com- munication, ouvr. citéSpringer, 2020, p. 231-246.

36. STEWART B., «Family Odobenidae», dans WILSON D. E., et MITTERMEIER Russell A. (dir.), Handbook of the Mammals of the World, t. IV, Sea Mammals, Lynx Edicions, 2014.

37. CHARRIER I., AUBIN T., et MATHEVON N., « Mother-calf vocal communication in Atlantic walrus: a first field experimental study», Anim Cogn, vol. 13, 2010, p. 471-482.

38. «Bonjourlesmorses»,https://videotheque.cnrs.fr/doc=2019

39. CHARRIER I., MATHEVON N., et JOUVENTIN P., « Mother’s voice recognition by seal pups », Nature, vol. 412, 2001, p. 873.

40. CHARRIERI.,JOUVENTINP.,etal,«Thesubantarcticfursealpup switches its begging behaviour during maternal absence», Can J Zool, vol. 80, 2002, p. 1250-1255.

41. MAYNARD SMITH J., et HARPER D., Animal Signals, Oxford, 2003 ; SEARCY W. A., et NOWICKI S., The Evolution of Animal Com- munication, Princeton University Press, 2005.

42. ANDERSON M. G., BRUNTON D. H., et HAUBER M. E., «Reliable information content and ontogenetic shift in begging calls of grey warbler nest- lings», Ethology, vol. 116, 2010, p. 357-365; CARO S. M., WEST S. A., et GRIFFIN A. S., «Sibling conflict and dishonest signaling in birds», PNAS, vol. 113, 2016, p. 13803-13808.

43. KEDAR H., LOTEM A., et al., «Experimental evidence for off- spring learning in parent-offspring communication », Proc R Soc Lond B, vol. 267, 2000, p. 1723-1727.

44. MCCARTY J. P., « The energetic cost of begging in nestling pas- serines », The Auk, vol. 113, 1996, p. 178-188 ; LEECH S. M., et LEONARD M. L., «Is there an energetic cost to begging in nestling tree swallows (Tachycineta bicolor) ? », Proc R Soc Lond B, vol. 263, 1996, p. 983-987.

45. BACHMAN G. C., et CHAPPELL M. A., «The energetic cost of begging behaviour in nestling house wrens », Anim Behav, vol. 55, 1998, p. 1607-1618.

46. HUSBY M., «Nestling begging calls increase predation risk by corvids », Anim Biol, vol. 69, 2019, p. 137-155.

47. MAGRATHR.D.,LEONARDM.T.,etal.,«Callingintheface of danger : predation risk and acoustic communication by parent birds and their offspring », Adv Stud Behav, vol. 41, 2010, p. 187-253 ; HUSBY M., « Nestling begging calls increase predation risk by corvids », art. cité.

48. MAGRATH R. D., LEONARD M. T., et al., « Calling in the face of danger : predation risk and acoustic communication by parent birds and their offspring », art. cité.

49. BRISKIE J. V., MARTIN P. R., et MARTIN T. E., « Nest predation and the evolution of nestling begging calls », Proc R Soc Lond B, vol. 266, 1999, p. 2153-2159.

50. HAFF T. M., et MAGRATH R. D., « Calling at a cost : elevated nestling calling attracts predators to active nests », Biol Let, vol. 7, 2011, p. 493-495.

51. ANDERSON M. G., BRUNTON D. H., et HAUBER M. E., « Species specificity of grey warbler begging solicitation and alarm calls revealed by nestling responses to playbacks », Anim Behav, vol. 79, 2010, p. 401-409.

52. KILNERR.M.,etHINDEC.A.,«Informationwarfareandparent–off- spring conflict », Adv St Behav, vol. 38, 2008, p. 283-336.

53. CARO S. M., WEST S. A., et GRIFFIN A. S., «Sibling conflict and dishonest signaling in birds», art. cité; BOWERS E. K., SAKALUK S. K., et al, « Condition-dependent begging elicits increased parental investment in a wild bird population », Am Nat, vol. 193, 2019, p. 725-737.

54. PRICE K., «Begging as competition for food in yellow-headed blackbirds », The Auk, vol. 4, 1996, p. 963-967.

55. MATHEVONN.,etCHARRIERI.,«Parent-offspringconflictandthecoor- dination of siblings in gulls », Proc R Soc Lond B, vol. 271, 2004, S145-S147 ; BLANC A., MATHEVON N., et al., « Coordination de la quémande entre les jeunes de mouette rieuse », CR Biol, vol. 333, 2010, p. 688-693.

56. LEONARDM.,etHORNA.,«Provisioningrulesintreeswallows», Behav Ecol Sociobiol, vol. 38, 1996, p. 341-347; LEONARD M. L., HORN A. G., et MUKHIDA A., «False alarms and begging in nestling birds », Anim Behav, vol. 69, 2005, p. 701-708

57. ROULINA.,«Thesiblingnegotiationhypothesis»,dansWRIGHTJ., et LEONARD M. L., The Evolution of Begging, Kluwer Acad Pub, 2002 ; DUCOURET P., ROULIN A., et al., « The art of diplomacy in vocally nego- tiating barn owl siblings », Front Ecol Evol, vol. 7, 2019, p. 351.

58. DREISS A. N., ROULIN A., et al., «Social rules govern vocal competition in the barn owl », Anim Behav, vol. 102, 2015, p. 95-107. 59. DREISS A. N., ROULIN A., et al., « Vocal communication regu- lates sibling competition over food stock », Behav Ecol Sociobiol, vol. 70,

2016, p. 927-937.
60. LIGOUT S., VIGNAL C., et al., «Not for parents only: begging

calls allow nest mate discrimination in juvenile zebra finches », Ethology, vol. 122, 2016, p. 193-206.

61. DRAGANOIUT.I.,KREUTZERM.,etal.,«Parentalcareandbrood division in a songbird, the black redstart », Behaviour, vol. 142, 2005,

p. 1495-1514 ; DRAGANOIU T. I., KREUTZER M., et al., « In a songbird, the black redstart, parents use acoustic cues to discriminate between their different fledglings », Anim Behav, vol. 71, 2006, p. 1039-1046.

62. BUGDEN S. C., et EVANS R. M., «Vocal solicitation of heat as an integral component of the developing thermoregulatory system in young domestic chickens », Can J Zool, vol. 75, 1997, p. 1949-1954.

63. MARIETTE M. M., et BUCHANAN K. L., « Prenatal acoustic communication programs offspring for high posthatching tempera- tures in a songbird », Science, vol. 353, 2016, p. 812-814 ; MARI- ETTE M. M., « Acoustic cooperation : acoustic communication regulates conflict and cooperation within the family », Front Ecol Evol, vol. 7, 2019, p. 445.

64. ELIE J. E., VIGNAL C., et al., « Vocal communication at the nest between mates in wild zebra finches : a private vocal duet ? », Anim Behav, vol. 80, 2010, p. 597-605; BOUCAUD I. C. A., VIGNAL C., et al., «Vocal negotiation over parental care? Acoustic communication at the nest predicts partners’ incubation share », Biol J Lin Soc, vol. 117, 2016, p. 322-336.

65. BOUCAUD I. C. A., VIGNAL C., et al., « Incubating females signal their needs during intrapair vocal communication at the nest : a feeding experiment in great tits », Anim Behav, vol. 122, 2016, p. 77-86.

66. Dawkinsaécrit,entreautresouvrages:Legèneégoïste,L’hor- loger aveugle et The Extended Phenotype.

67. DAWKINSR.,etKREBSJ.R.,«Animalsignals:mind-readingand manipulation », dans id. (dir.), Behavioural Ecology : An Evolutionary Approach, Oxford, 1978.

68. DAVIS N. B., Cuckoos, Cowbirds and Other Cheats, London, T & A Poyser, 2000.

69. SOLER M. (dir.), Avian Brood Parasitism, Springer, 2017.

70. ANDERSONM.G.,HAUBERM.E.,etal.,«Beggingcallmatching between a specialist brood parasite and its host : a comparative approach to detect coevolution », Biol J Lin Soc, vol. 98, 2009, p. 208-216 ; URSINO C. A., DE MARSICO M. C., et al., « Host provisioning behavior favors mimetic begging calls in a brood-parasitic cowbird », Behav Ecol, vol. 29, 2018, p. 328-332.

71. KILNER R. M., NOBLE D. G., et DAVIES N. B., « Signals of need in parent– offspring communication and their exploitation by the common cuckoo », Nature, vol. 397, 1999, p. 667-672.

72. SAMAS P., HONZA M., et al., « Nestlings of the common cuckoo do not mimic begging calls of two closely related Acrocephalus hosts», Anim Behav, vol. 161, 2020, p. 89-94 ; JAMIE G. A., et KILNER R. M., « Begging call mimicry by brood parasite nestlings : adaptation, manipula- tion and development », dans SOLER M. (dir.), Avian Brood Parasitism, ouvr. cité.

73. LANGMORE N. E., HUNT S., et KILNER R. M., « Escalation of a coevolutionary arms race through host rejection of brood parasitic young », Nature, vol. 422, 2003, p. 157-160 ; LANGMORE N. E., et KILNER R. M., « The coevolutionary arms race between Horsfield’s bronze-cuckoos and superb fairy-wrens », Emu, vol. 110, 2010, p. 32-38.

74. WRIGHT J., et LEONARD M. L., The Evolution of Begging, ouvr. cité ; ROYLE N., et al., The Evolution of Parental Care, Oxford Univ Press, 2012.

75. COLOMBELLI-NÉGREL D., KLEINDORFER S., et al., «Embryonic learning of vocal passwords in superb fairy-wrens reveals intruder cuckoo nestlings », Current Biol, vol. 22, 2012, p. 2155-2160.

76. KINGS.L.,JAAKKOLAK.,etal.,«Maternalsignaturewhistleuse aids mother – calf reunions in a bottlenose dolphin, Tursiops truncatus », Behav Proc, vol. 126, 2016, p. 64-70.

77. CHARRIER I., MATHEVON N., et AUBIN T., « Bearded seal males perceive geographic variation in their trills » Behav Ecol Sociobiol, vol. 67, 2013, p. 1679-1689.

78. MONTGOMERYJ.C.,etRADFORDC.A.,«Marinebioacoustics», Cur Biol, vol. 27, 2017, R502-R507.

79. Et même des oiseaux en plongée. Un article récent montre que les manchots vocalisent sous l’eau : THIEBAULT A., PISTORIUS P. A., et al., « First evidence of underwater vocalisations in hunting penguins », Peer J, vol. 7, 2019, e8240.

80. TOLIMIERIN.,JEFFSA.,etal.,«Ambientsoundasanavigational cue for larval reef fish », Bioacoustics, vol. 12, 2002, p. 214-217.

81. VERSLUIS M., LOHSE D., et al., «How snapping shrimp snap: through cavitating bubbles », Science, vol. 289, 2000, p. 2114-2117.

82. SIMPSON S. D., JEFFS A., et al., «Homeward sound», Science, vol. 308, 2005, p. 221.

83. GORDONT.A.C.,SIMPSONS.D.,etal.,«Acousticenrichment can enhance fish community development on degraded coral reef habitat », Nat Com, vol. 10, no 5414, 2019.

84. Pour en savoir plus sur les baleines et les dauphins : WHITE- HEAD H., et RENDELL L., The Cultural Lives of Whales And Dolphins, Univ Chicago Press, 2015.

85. WILSON D. E., et MITTERMEIER R. A. (dir.), Handbook of the Mammals of the World, t. IV, ouvr. cité, 2014.

86. HUELSMANNM.,HILLERM.,etal.,«Geneslostduringthetran- sition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations », Sc Adv, vol. 5, 2019, eaaw6671.

87. ADAM O., REIDENBERG S., et al., « New acoustic model for humpback whale sound production », App Acoust, vol. 74, 2013, p. 1182- 1190 ; DAMIEN J., REIDENBERG J. S., et al., « Anatomy and functional morphology of the mysticete rorqual whale larynx: phonation positions of the u fold », Anat Rec, vol. 302, 2019, p. 703-717.

88. REIDENBERG J. S., et LAITMAN J. T., « Anatomy of underwater sound production with a focus on ultrasonic vocalization in toothed whales including dolphins and porpoises », dans BRUDZYNSKI S. (dir.), Handbook of Ultrasonic Vocalization, t. XXV, Elsevier, 2018, p. 509-519.

89. AMESA.E.,BEEDHOLMK,etMADSENP.T.,«Lateralizedsound production in the beluga whale (Delphinapterus leucas) », J Exp Biol, vol. 223, 2020, jeb226316.

90. STAFFORD K. M., KOVACS K. M., et al., «Extreme diversity in the songs of Spitsbergen’s bowhead whales», Biol Let, vol. 14, 2018, 20180056.

91. PAYNE R. S., et MCVAY S., « Songs of humpback whales », Sci- ence, vol. 173, 1971, p. 587-597; ROTHENBERG D., Thousand Mile Song : Whale Music in a Sea of Sound, Basic Books, 2010.

92. PAYNE K., et PAYNE R. S., « Large scale changes over 19 years in songs of humpback whales in Bermuda », Zeit Psychol, vol. 68, 1985, p. 89-114.

93. NOAD M. J., JENNER K. C. S., et al., «Cultural revolution in whale songs », Nature, vol. 408, 2000, p. 537.

94. HERMAN L. M., «The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system : review, evaluation, and synthesis », Biol Rev, vol. 92, 2017, p. 1795-1818.

95. TYACK P., « Differential response of humpback whales, Megap- tera novaeangliae, to playback of song or social sounds », Behav Ecol Sociobiol, vol. 13, 1983, p. 49-55.

96. MERCADO III E., «The sonar model for humpback whale song revised », Front Psychol, vol. 9, 2018, p. 1156.

97. Voir le reportage d’Antonio Fischetti: «Reportage / Les chants de la mer (Baleines à Madagascar) », chaîne YouTube Le blob, l’extra-média, 29 décembre 2017.

98. JANIK V. M., SAYIGH L. S., et WELLS R. S., «Signature whis- tle shape conveys identity information to bottlenose dolphins», PNAS, vol. 103, 2006, p. 8293-8297.

99. KINGS.L.,etJANIKV.M.,«Bottlenosedolphinscanuselearned vocal labels to address each other », PNAS, vol. 110, 2013, p. 13216- 13221 ; les belugas, les fameuses baleines blanches (appelées aussi les canaris des mer), imitent également leurs signatures vocales : MORISAKA T., NISHIMOTO S., et al., «Exchange of “signature” calls in captive belugas (Delphinapterus leucas) », J Ethol, vol. 31, 2013, p. 141-149.

100. JANIK V. M., et SAYIGH L. S., «Communication in bottle- nose dolphins : 50 years of signature whistle research », J Comp Physiol, vol. 199, 2013, p. 479-489.

101. KING S. L., KRÜTZEN M., et al., « Bottlenose Dolphins retain individual vocal labels in multi-level alliances », Cur Biol, vol. 28, 2018, p. 1993-1999.

102. KING S. L., JAAKKOLA K., et al., « Maternal signature whistle use aids mother-calf reunions in a bottlenose dolphin, Tursiops trunca- tus », art. cité.

103. RICE A., SIROVIC A., et al., « Spatial and temporal occurrence of killer whale ecotypes off the outer coast of Washington State, USA », Mar Ecol Prog Series, vol. 572, 2017, p. 255-268.

104. BARRETT-LENNARD L., « Killer whale evolution : populations, ecotypes, species, Oh my ! », J Amer Cetac Soc, vol. 40, 2011, p. 48-53.

105. FORD J. K. B., «Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia », Can J Zool, vol. 69, 1991, p. 1454-1483.

106. DEECKE V. B., FORD J. K. B., et SPONG P., « Dialect change in resident killer whales : implications for vocal learning and cultural trans- mission », Anim Behav, vol. 40, 2000, p. 629-638.

107. CURÉ C., MILLER P. J. O., et al., « Evidence for discrimination between feeding sounds of familiar fish and unfamiliar mammal-eating killer whale ecotypes by long-finned pilot whales », Anim Cogn, vol. 22, 2019, p. 863-882.

108. ISOJUNNO S., MILLER P. J. O., et al., «Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds », Ecol Appl, vol. 26, 2016, p. 77-93.

109. CURÉ C., et al., « Responses of male sperm whales (Physeter macrocephalus) to killer whale sounds: implications for anti-predator strategies », Sc Rep, vol. 3, 2013, 1579.

110. CLARKEM.R.,«Functionofthespermacetiorganofthesperm whale », Nature, vol. 228, 1970, p. 873-874.

111. Voir l’explication animée de Joy Reidenberg: «Sperm whale », chaîne YouTube Acoustical Society of America, 17 mai 2017. 112. HUGGENBERG S., et al., « The nose of the sperm whale : over- views of functional design, structural homologies and evolution », J Mar

Biol Assoc Unit King, vol. 96, 2016, p. 783-806.
113. OLIVEIRA C. et al., «The function of male sperm whale slow

clicks in a high latitude habitat : Communication, echolocation, or prey debilitation ? », JASA, vol. 133, 2013, p. 3135-3144 ; TONNESEN P. et al., « The long-range echo scene of the sperm whale biosonar », Biol Let, vol. 16, Issue 8, 2020, 20200134.

114. GORDON J. C. D., «Evaluation of a method for determining the length of sperm whales (Physeter catodon) from their vocalizations », J Zool, vol. 224, 1991, p. 301-314; MØHL B., SURLYKKE A., et al., « Sperm whale clicks : directionality and source levels revisited », JASA, vol. 107, 2000, p. 638-648 ; MØHL B., « Sound transmission in the nose of the sperm whale Physeter catodon. A post mortem study», J Comp Physiol A, vol. 187, 2001, p. 335-340.

115. GROWCOTT A., DAWSON S., et al., « Measuring sperm whales from their clicks : a new relationship between

IPIs and photogrammetrically measured lengths», JASA, vol. 130, 2011, p. 568-573.

116. RENDELL L. E., et WHITEHEAD H., « Vocal clans in sperm whales (Physeter macrocephalus) », Proc R Soc Lond B, vol. 270, 2003, p. 225-231.

117. GERO S., WHITEHEAD H., RENDELL L., « Individual, unit and vocal clan level identity cues in sperm whale codas », R Soc Op Sc, vol. 3, 2016, p. 150372.

118. LE BŒUF B. J., et LAWS R. M., Elephant seals, population ecology, behavior and physiology, Univ Calif Press, 1994.

119. CASEY C., REICHMUTH C., et al., «Rival assessment among northern elephant seals : evidence of associative learning during male-male contests », R Soc Open Sc, vol. 2, 2015, 150228.

120. MATHEVON N., CHARRIER I., et al., «Northern elephant seals memorize the rhythm and timbre of their rivals’ voices », Cur Biol, vol. 27, 2017, p. 2352-2356.

121. CASEY C., et al, «The genesis of giants: behavioural ontog- eny of male northern elephant seals», Anim Behav, vol. 166, 2020, p. 247-259.

122. Pour tout savoir sur les crocodiliens : GRIGG G., et KIRSH- NER D., Biology and Evolution of Crocodylians, CSIRO, 2015.

123. VERGNE A. L., PRITZ M. B., et MATHEVON N., «Acoustic communication in crocodilians: from behaviour to brain», Biol Rev, vol. 84, 2009, p. 391-411.

124. MARQUISO.,etal.,«Observationsonbreedingsite,bioacoustics and biometry of hatchlings of Paleosuchus trigonatus (Schneider, 1801) from French Guiana (Crocodylia : Alligatoridae) », Herp Notes, vol. 13, 2020, p. 513-516.

125. VERGNEA.L.,etMATHEVONN.,«Crocodileeggsoundssignal hatching time », Cur Biol, vol. 18, 2008, R513-R514.

126. VERGNEA.L.,MATHEVONN.,etal.,«Acousticsignalsofbaby black caimans », Zoology, vol. 114, 2011, p. 313-320.

127. MATHEVON N., ACOSTA J. G., et al., «The code size: Behavioural response of crocodile mothers to offspring calls depends on

the emitter’s size, not on its species identity », dans Crocodiles, Proceedings of the 24th Working Meeting of the Crocodile Specialist Group, 2016, p. 79-84.

128. VERGNEA.L.,MATHEVONN.,etal.,«Acousticcommunication in crocodilians: information encoding and species specificity of juvenile calls », Anim Cogn, vol. 15, 2012, p. 1095-1109.

129. VERGNE A. L., MATHEVON N., et al., « Parent-offspring com- munication in the Nile crocodile Crocodylus niloticus : do newborns’ calls show an individual signature ? », Naturwissen, vol. 94, 2007, p. 49-54.

130. PAPETL.,MATHEVONN.,etal.,«Influenceofheadmorphology and natural postures on sound localization cues in crocodilians », R Soc Open Sc, vol. 6, 2019, 190423 ; PAPET L., et al., « Crocodiles use both interaural level differences and interaural time differences to locate a sound source », JASA, vol. 148, 2020, EL307.

131. GREENFIELD M. D., « Evolution of acoustic communication in insects», dans POLLACK G. S., MASON A. C., POPPER A., FAY R. R. (dir.), Insect Hearing, ouvr. cité, p. 17-47.

132. VERMEIJG.J.,«Soundreasonsforsilence:whydomolluscsnot communicate acoustically?», Biol J Lin Soc, vol. 100, 2010, p. 485- 493 ; l’escargot émettrait des sons, sans que l’on sache s’ils servent à communiquer : BREURE A. S. H., « The sound of a snail : two cases of acoustic defence in gastropods », J Mollusc Stud, vol. 81, 2015, p. 290- 293; les moules perçoivent des vibrations sonores: CHARIFI M., MASSABUAU J.-C., et al., «The sense of hearing in the Pacific oyster, Magallana gigas », PloS One, vol. 12, 2017, e0185353.

133. BRADBURY J. W., et VEHRENCAMP S. L., Principles of Animal Communication, ouvr. cité.

134. LARSENO.N.,etWAHLBERGM.,«Soundandsoundsources», art. cité, p. 3-61. Ce chapitre fournit des explications très détaillées sur ces notions qui, vous vous en doutez, sont plus complexes que ce que je vous en dis... Allergiques à la physique, s’abstenir !

135. BUDELMANN B. U., « Hearing in Crustacea », dans Web- ster D. B., Fay R. R. (dir.), Evolutionary Biology of Hearing, Springer, 1992, p. 131-139.

136. KAIFU K., SEGAWA S., et al., « Underwater sound detection by cephalopod statocyst », Fish Sc, vol. 74, 2008, p. 781-786.

137. LADICHF.,etWINKLERH.,«Acousticcommunicationinterres- trial and aquatic vertebrates », J Exp Biol, vol. 220, 2017, p. 2306-2317. 138. CLACK J. A., FAY R. R., et POPPER A. N., Evolution of the Vertebrate Ear, Springer, 2016 ; MONTEALEGRE-Z. F., ROBERT D., et al., «Convergent evolution between insect and mammalian audition», Sci-

ence, vol. 338, 2012, p. 968-971.
139. RÖMERH.,«Acousticcommunication»,dansCÓRDOBA-AGUILARA.,

GONZÁLEZ-TOKMAN D, et GONZÁLEZ-SANTOYO I. (dir.), Insect Behavior: from mechanisms to ecological and evolutionary consequences, Oxford Univ Press, 2018, p. 174-188; BALAKRISHNAN R., «Behavioral ecology of insect acoustic communication», dans POLLACK G. S., MASON A. C., POPPER A., FAY R. R. (dir.), Insect Hearing, ouvr. cité ; GÖPFERT M. C., et HENNIG R. M., « Hearing in insects », Annu Rev Entomol, vol. 61, 2016, p. 257-276.

140. MATTHEWS R. W., et MATTHEWS J. R., Insect Behavior, Springer, 2010.

141. GÖPFERTM.C.,etal.,«Tympanalandatympanal“mouth-ears” in hawkmoths (Sphingidae) », Proc R Soc B, vol. 269, 2002, p. 89-95. 142. BROWN E. E., BUTLER R. J., et al., « Quantifying the complete- ness of the bat fossil record », Palaeontology, vol. 62, 2019, p. 757-776. 143. GREENFIELD M. D., « Evolution of acoustic communication in insects», dans POLLACK G. S., MASON A. C., POPPER A., FAY R. R.

(dir.), Insect Hearing, ouvr. cité.
144. GERHARDT H. C., et HUBER F., Acoustic communication in

insects and anurans : common problems and diverse solutions, Univ Chicago Press, 2002.

145. YAGER D. D., et SVENSON G. J., « Patterns of praying mantis auditory system evolution based on morphological, molecular, neurophysio- logical, and behavioural data », Biol J Lin Soc, vol. 94, 2008, p. 541-568.

146. ALBERTJ.T.,etKOZLOVA.S.,«Comparativeaspectsofhearing in vertebrates and insects with antennal ears », Cur Biol, vol. 26, 2016, R1050-R1061.

147. KERWIN P., et al., « Female copulation song is modulated by seminal fluid », Nat Com, vol. 11, 2020.

148. RYBAK F., SUREAU G., et AUBIN T., « Functional coupling of acoustic and chemical signals in the courtship behaviour of the male Drosophila melanogaster », Proc R Soc B, vol. 269, 2002, p. 695-701.

149. JACKSONJ.C.,etROBERTD.,«Nonlinearauditorymechanism enhances female sounds for male mosquitoes », PNAS, vol. 103, 2006, p. 16734-16739.

150. GIBSON G., et RUSSELL I., « Flying in tune : sexual recognition in mosquitoes », Cur Biol, vol. 16, 2006, p. 1311-1316.

151. MANLEY G. A., «Cochlear mechanisms from a phylogenetic viewpoint », PNAS, vol. 97, 2000, p. 11736-11743.

152. MOFFAT A. J. M., et CAPRANICA R. R., « Auditory sensitivity of the saccule in the American toad (Bufo americanus) », J Comp Physiol, vol. 105, 1976, p. 1-8.

153. SISNEROS J. A., Fish hearing and bioacoustics, Springer, 2016.

154. PARMENTIER É., et DIOGO R., « Evolutionary trends of swim- bladder sound mechanisms in some teleost fishes », dans LADICH F., COL- LIN P. S., MOLLER P., KAPOOR B. G. (dir.), Communication in Fishes, 2006, t. I, p. 43-68.

155. LADICH F., et SCHULZ-MIRBACH T., « Diversity in fish auditory systems : one of the riddles of sensory biology », Front Ecol Evol, vol. 4, 2016, p. 28.

156. LEOVANHEMMENJ.,NARINSP.M.,etal.,«AnimalsandICE: meaning, origin, and diversity », Biol Cyb, vol. 110, 2016, p. 237-246. 157. VEDURMUDI A. P., VAN HEMMEN J. L., et al., « How internally coupled ears generate temporal and amplitude cues for sound localization »,

Phys Rev Let, vol. 116, 2016, 028101.
158. SCHNUPP J. W. H., et CARR C. E., «On hearing with more

than one ear: lessons from evolution», Nat Neurosc, vol. 12, 2009, p. 692-697.

159. ROBERT D., « Directional hearing in insects », dans FAY R. R., Sound Source Localization, Springer, 2005, p. 6-35 ; MONTEALEGRE-Z. F., ROBERT D., et al., « Convergent evolution between insect and mammalian audition », Science, vol. 338, 2012, p. 968-971.

160. BOISTEL R., AUBRY J.-F., et al., « How minute sooglossid frogs hear without a middle ear », PNAS, vol. 17, 2013, p. 15360-15364.

161. SUPIN A. Y., et al., The Sensory Physiology of Aquatic Mam- mals, Springer, 2001.

162. CHURCHILL M., GEISLER J. H., et al., «The origin of high- frequency hearing in whales », Cur Biol, vol. 26, 2016, p. 2144-2149.

163. AU W. W. L., et FAY R. R., Hearing by whales and dolphins, Springer, 2000 ; CRANFOR T., et KRYSL P., « Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing », PLoS ONE, vol. 10, 2015, e0116222 ; PARK T., FITZGERALD E. M. G., et al., « Low- frequency hearing preceded the evolution of giant body size and filter feeding in baleen whales », Proc R Soc B, vol. 284, 2017, 20162528.

164. NELSOND.A.,etMARLERP.,«Categoricalperceptionofanatu- ral stimulus continuum : birdsong », Science, vol. 244, 1989, p. 976-978. 165. MAY B., et al., « Categorical perception of conspecific commu- nication sounds by Japanese macaques, Macaca fuscata », J Acoust Soc

Am, vol. 85, 1989, p. 837-847.
166. BAUGHA.T.,AKREK.L.,etRYANM.J.,«Categoricalpercep-

tion of a natural, multivariate signal : mating call recognition in túngara frogs », PNAS, vol. 105, 2008, p. 8985-8988.

167. GREENFIELD M. D., « Mechanisms and evolution of communal sexual displays in arthropods and anurans », Adv Stud Behav, vol. 35, 2005, p. 1-62.

168. VERGNE A. L., MATHEVON N., et al., « Parent-offspring com- munication in the Nile crocodile Crocodylus niloticus : do newborns’ calls show an individual signature ? », Naturwis, vol. 94, 2007, p. 49-54.

169. CHABERTT.,MATHEVONN.,etal.,«Sizedoesmatter:crocodile mothers react more to the voice of smaller offspring», Sci Rep, vol. 5, 2015, 15547.

170. TAYLOR A. M., et al., «Vocal production by terrestrial mam- mals : source, filter, and function », dans SUTHERS R. A., FITCH W. T., FAY R. R., et POPPER A. N. (dir.), Vertebrate Sound Production and Acoustic Communication, Springer, 2016, p. 229-259.

171. BOWLINGD.L.,FITCHW.T.,etal.,«Bodysizeandvocalization in primates and carnivores », Sc Rep, vol. 7, 2017, 41070.

172. GARCIAM.,FITCHW.T.,etal.,«Acousticallometryrevisited: morphological determinants of fundamental frequency in primate vocal production », Sc Rep, vol. 7, 2017, 10450 ; sur l’évolution du larynx, voir aussi BOWLING D. L., et al., « Rapid evolution of the primate lar- ynx ? », PLOS Biol, vol. 18, 2020, e3000764.

173. Pourdesdiscussionsapprofondiesautourduconceptdetim- bre, voir PIAZZA E. A., WHITNEY D., et al., « Rapid adaptation to the timbre

of natural sounds », Sc Rep, vol. 8, 2018, 13826 ; et ELLIOTT T. M., et al., « Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones », JASA, vol. 133, 2013, p. 389-404.

174. GARCIAM.,FITCHW.T.,etal.,«Honestsignalingindomestic piglets (Sus scrofa domesticus): vocal allometry and the information con- tent of grunt calls », J Exp Biol, vol. 219, 2016, p. 1913-1921.

175. REBER S. A., FITCH W. T., et al., « A Chinese alligator in heliox : formant frequencies in a crocodilian », J Exp Biol, vol. 218, 2015, p. 2442-2447; REBER S. A., FITCH W. T., et al., «Formants provide honest acoustic cues to body size in American alligators », Sc Rep, vol. 7, 2017, 1816.

176. CHARLTON B. D., et REBY D., « The evolution of acoustic size exaggeration in terrestrial mammals », Nat Com, vol. 7, 2016, 12739.

177. REBY D., et MCCOMB K., « Vocal communication and repro- duction in deer », Adv St Behav, vol. 33, 2003, p. 231-264.

178. CHARLTON B. D., REBY D., et MCCOMB K., « Female red deer prefer the roars of larger males », Biol Let, vol. 3, 2007, p. 382-385.

179. MCCOMBK.,«Femalechoiceforhighroaringratesinreddeer, Cervus elaphus », Anim Behav, vol. 41, 1991, p. 79-88.

180. REBY D., PÉPIN D., et al., « Red deer (Cervus elaphus) hinds discriminate between the roars of their current harem holder stag and those of neighbouring stags », Ethology, vol. 107, 2001, p. 951-959.

181. CHARLTON B. D., REBY D., et al., « Koalas use a novel vocal organ to produce unusually low-pitched mating calls », Cur Biol, vol. 23, 2013, R1035-R1036.

182. FITCH W. T., «Vertebrate vocal production: an introductory overview », dans SUTHERS R. A., FITCH W. T., FAY R. R., et POP- PER A. N. (dir.), Vertebrate Sound Production and Acoustic Communi- cation, ouvr. cité, p. 1-18.

183. BRADBURY J. W., « Lek mating behavior in the hammer headed bat », Ethology, vol. 45, 1977, p. 225-255.

184. FREY R., et GEBLER A., dans BRUDZYNSKI S. (dir.), Handbook of Mammalian Vocalization, Elsevier, 2010, p. 439-450.

185. MATHEVONN.,etVIENNOTÉ.,«Avant-propos»,dansMATHE- VON N., et VIENNOT É. (dir.), La différence des sexes, Belin, 2017, p. 7-28.

186. GRAWUNDER, et al., « Higher fundamental frequency in bono- bos is explained by larynx morphology », Cur Biol, vol. 28, 2018, R1171-R1189.

187. GREENFIELD M., «Honesty and deception in animal signals», dans LUCAS J., et SIMMONS L. (dir.), Essays in Animal Behaviour, Elsevier, 2006, p. 279-300.

188. BEE M. A., OWEN P. C., et al., «Male green frogs lower the pitch of acoustic signals in defense of territories : a possible dishonest signal of size ? », Behav Ecol, vol. 11, 2000, p. 169-177.

189. ZAHAVI A., «Mate selection-A selection for a handicap», J Theor Biol, vol. 53, 1975, p. 205-214 ; BRADBURY J. W., et VEHREN- CAMP S. L., Principles of Animal Communication, ouvr. cité.

190. VALLET É., et KREUTZER M., «Female canaries are sexu- ally responsive to special song phrases», Anim Behav, vol. 49, 1995, p. 1603-1610.

191. VALLETÉ.,KREUTZERM.,etal.,«Two-notesyllablesincanary songs elicit high levels of sexual display », Anim Behav, vol. 55, 1998, p. 291-297.

192. OBERWEGER K., et GOLLER F., « The metabolic cost of birdsong production », J Exp Biol, vol. 204, 2001, p. 3379-3388.

193. CASAGRANDE S., PINXTEN R., et EENS M., « Honest signaling and oxidative stress : the special case of avian acoustic communication », Front Ecol Evol, vol. 4, 2016, p. 52 ; SPENCER K. A., CATCHPOLE C. K., et al., «Parasites affect song complexity and neural development in a songbird », Proc R Soc B, vol. 272, 2005, p. 2037-2043.

194. GILD.,etGAHRM.,«Thehonestyofbirdsong:multiplecon- straints for multiple traits », Trends Ecol Evol, vol. 17, 2002, p. 133-141. 195. BUCHANAN K. L., « Stress and the evolution of condition-

dependent signals», Trends Ecol Evol, vol. 15, 2000, p. 156-160. 196. BUCHANAN K. L., LODGE A., et al., « Song as an indica- tor of parasitism in the sedge warbler », Anim Behav, vol. 57, 1999,

p. 307-314.
197. MAYNARD SMITH J., et HARPER D., Animal Signals, ouvr. cité. 198. Pourbiencomprendrelanotiond’évolutionetcelled’espèce

animale, voyez la conférence de G. Lecointre, professeur au Muséum national d’histoire naturelle: «La sélection naturelle, un concept

audacieux / Guillaume Lecointre », chaîne YouTube Le blob, l’extra- média, 23 août 2017.

199. TINBERGENN.,«“Derived”activities;theircausation,biological significance, origin, and emancipation during evolution», Q Rev Biol, vol. 27, 1952, p. 1-32.

200. CLARK C. J., «Locomotion-induced sounds and sonations: mechanisms, communication function, and relationship with behavior », dans SUTHERS R. A., FITCH W. T., FAY R. R., et POPPER A. N. (dir.), Vertebrate Sound Production and Acoustic Communication, ouvr. cité, p. 83-117.

201. MURRAY T. G., ZEIL J., et MAGRATH R. D., « Sounds of Mod- ified flight feathers reliably signal danger in a pigeon », Cur Biol, vol. 27, 2017, p. 3520-3525.

202. CLARK C. J., « Signal or cue ? Locomotion-induced sounds and the evolution of communication », Anim Behav, vol. 143, 2018, p. 83-91. 203. GOULD S. J., The Structure of Evolutionary Theory, Harvard

Univ Press, 2002.
204. MONTEALEGRE-Z F., et al., « Sound radiation and wing mecha-

nics in stridulating field crickets (Orthoptera: Gryllidae)», J Exp Biol, vol. 214, 2011, p. 2105-2117.

205. FONSECA P. J., « Cicada acoustic communication », dans HED- WIG B. (dir.), Insect Hearing and Acoustic Communication, Springer, 2014, p. 101-121.

206. Sur l’évolution des organes auditifs et producteurs de sons chez les insectes, voir l’article SONG H., et al., « Phylogenomic analysis shed light on the evolutionary pathways towards acoustic communication in Orthoptera », Nat Com, vol. 11, 2020, 4939.

207. PARMENTIER É., DIOGO R., et FINE M. L., « Multiple exapta- tions leading to fish sound production », Fish & Fisheries, vol. 18, 2017, p. 958-966.

208. PARMENTIER É., HERREL A., et al., « Sound production in the clownfish Amphiprion clarkii », Science, vol. 316, 2007, p. 1006.

209. MILLOTS.,VANDEWALLEP.,etPARMENTIERÉ.,«Soundproduc- tion in red-bellied piranhas (Pygocentrus nattereri, Kner): an acoustical, behavioural and morphofunctional study », J Exp Biol, vol. 214, 2011, p. 3613-3618.

210. AMORIMP.,«Diversityofsoundproductioninfish»,dansLAD- ICH F., COLLIN P. S., MOLLER P., KAPOOR B. G. (dir.), Communication in Fishes, Science Publishers, 2006, p. 71-105.

211. Id., «Fish sounds and mate choice», dans LADICH F. (dir.), Sound Communication in Fishes, Springer, 2015, p. 1-33.

212. BERTUCCI F., MATHEVON N., et al., « Sounds produced by the Cichlid fish Metriaclima zebra allow reliable estimation of size and provide information on individual identity », J Fish Biol, vol. 80, 2012, p. 752-766.

213. BERTUCCI F., MATHEVON N., et al., « Sounds modulate males’ aggressiveness in a Cichlid fish », Ethology, vol. 116, 2010, p. 1179-1188 ; BERTUCCI F., MATHEVON N., et al., « The relevance of temporal cues in a fish sound : a first experimental investigation using modified signals in Cichlids », Anim Cogn, vol. 16, 2013, p. 45-54.

214. AMORIM M. C. P., FONSECA P. J., et al., « Mate preference in the painted goby : the influence of visual and acoustic courtship signals », J Exp Biol, vol. 216, 2013, p. 3996-4004.

215. WYTTENBACH R. A., MAY M. L., et HOY R. R., « Categorical perception of sound frequency by crickets», Science, vol. 273, 1996, p. 1542-1544.

216. ROBILLARD T., GRANDCOLAS P., et DESUTTER-GRANDCOLAS L., « A shift toward harmonics for high-frequency calling shown with phylo- genetic study of frequency spectra in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae) », Can J Zool, vol. 85, 2007, p. 1264-1274.

217. HOFSTEDE H. M., HEDWIG B., et al., « Evolution of a commu- nication system by sensory exploitation of startle behavior», Cur Biol, vol. 25, 2015, p. 3245-3252.

218. RÖMER H., « Insect acoustic communication : the role of trans- mission channel and the sensory system and brain of receivers», Func Ecol, vol. 34, 2020, p. 310-321.

219. WILKINS M. R., SEDDON N., et SAFRAN R. J., « Evolutionary divergence in acoustic signals: causes and consequences», Trends Ecol Evol, vol. 28, 2013, p. 156-166.

220. L’ancêtre commun à l’espèce humaine et aux grands singes actuels remonte à 6 ou 7 millions d’années. Notre espèce Homo sapiens s’est distinguée des autres espèces humaines il y a seulement

300000 ans. HUBLIN J.-J., GUNZ P., et al., «New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens », Nature, vol. 546, 2017, p. 289-292.

221. PRUMR.O.,LEMMONA.R.,etal.,«Acomprehensivephylog- eny of birds (Aves) using targeted next-generation DNA sequencing», Nature, vol. 526, 2015, p. 569-573.

222. MASON N. A., DERRYBERRY E. P., et al., «Song evolution, speciation, and vocal learning in passerine birds», Evolution, vol. 71, 2016, p. 786-796.

223. AMEZQUITA A., HÖDL W., et al., « Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs », PNAS, vol. 108, 2011, p. 17058-17063; TOBIAS J. A., SEDDON N., et al., « Species interactions and the structure of complex communication networks », PNAS, vol. 111, 2014, p. 1020-1025.

224. Voir par exemple, à propos de l’évolution des signaux sonores des mammifères: CHARLTON B. D., et al., «Coevolution of vocal signal characteristics and hearing sensitivity in forest mammals», Nat Com, vol. 10, no 2778, 2019.

225. HYACINTHEC.,ATTIAJ.,etRÉTAUXS.,«Evolutionofacoustic communication in blind cavefish », Nat Com, vol. 10, no 4231, 2019.

226. GARCIA M., THEUNISSEN F., et al., «Evolution of commu- nication signals and information during species radiation», Nat Com, vol. 11, no 4970, 2020. Voir aussi le post sur le blog de Nature Ecology & Evolution : https://natureecoevocommunity.nature.com/posts/ information-tinkering-in-an-animal-communication-system

227. PODOSJ.,«Correlatedevolutionofmorphologyandvocalsignal structure in Darwin’s finches», Nature, vol. 409, 2001, p. 185-188; PODOS J., et NOWICKI S., « Beaks, adaptation, and vocal evolution in Dar- win’s finches », Bioscience, vol. 54, 2004, p. 501-510 ; SERVEDIO M. R., NOSIL P., et al., «Magic traits in speciation: “magic” but not rare?», Trends Ecol Evol, vol. 26, 2011, p. 389-397.

228. MCGREGOR P. K. (dir.), Animal Communication Networks, Cambridge Univ Press, 2005.

229. ZANN R. A., The Zebra Finch, Oxford Univ Press, 1996.

230. ELIE J. E., et THEUNISSEN F. E., «The vocal repertoire of the domesticated zebra finch : a data-driven approach to decipher the

information-bearing acoustic features of communication signals », Anim Cogn, vol. 19, 2015, p. 285-315.

231. VIGNAL C., et al., «Mate recognition by female zebra finch: Analysis of individuality in male call and first investigations on female decoding process », Behav Process, vol. 77, 2008, p. 191-198.

232. VIGNAL C., et al., « Audience drives male songbird response to partner’s voice », Nature, vol. 430, 2004, p. 448-451.

233. PERRY S., et al., « White-faced capuchin monkeys show triadic awareness in their choice of allies », Anim Behav, vol. 67, 2004, p. 165- 170 ; JOLLY A., « Lemur social behavior and primate intelligence », Sci- ence, vol. 153, 1966, p. 501-506 ; TOMASELLO M., et CALL J., Primate Cognition, Oxford Univ Press, 1997.

234. ELIE J. E., et al., «Dynamics of communal vocalizations in a social songbird, the zebra finch (Taeniopygia guttata) », JASA, vol. 129, 2011, p. 4037-4046.

235. ELIE J. E., et al., « Same-sex pair-bonds are equivalent to male- female bonds in a life-long socially monogamous songbird », Behav Ecol Sociobiol, vol. 65, 2011, p. 2197-2208.

236. GEBERZHAN N., et GAHR M., « Undirected (solitary) birdsong in female and male blue-capped cordon-bleus (Uraeginthus cyanocepha- lus) and its endocrine correlates», PLoS ONE, vol. 6, 2011, e26485; OTA N., et al., «Tap dancing birds: the multimodal mutual courtship display of males and females in a socially monogamous songbird », Sc Rep, vol. 5, 2015, 16614 ; OTA N., et al., « Songbird tap dancing produces non-vocal sounds », Bioacoustics, vol. 26, 2017, p. 161-168.

237. OTAN.,etal.,«Couplesshowingoff:Audiencepromotesboth male and female multimodal courtship display in a songbird», Sc Adv, vol. 4, 2018, eaat4779.

238. ZUBERBÜHLERK.,«Audienceeffects»,CurBiol,vol.18,2008, R189-R190.

239. MARLER P., et al., « Vocal communication in the domestic chicken : II. Is a sender sensitive to the presence and nature of a receiver ? », Anim Behav, vol. 34, 1986, p. 194-198.

240. SLOCOMBE K. E., et ZUBERBÜHLER K., «Chimpanzees modify recruitment screams as a function of audience composition », PNAS, vol. 104, 2007, p. 17228-17233.

241. SEMPLE S., et al., «Bystanders affect the outcome of mother- infant interactions in rhesus macaques », Proc R Soc B, vol. 276, 2009, p. 2257-2262.

242. WICHS.A.,etDEVRIESH.,«Malemonkeysrememberwhich group members have given alarm calls », Proc R Soc B, vol. 273, 2006, p. 735-740.

243. CHENEY D. L., et SEYFARTH R. M., How Monkeys See the World : Inside the Mind of Another Species, Chicago Univ Press, 1990. 244. GROSENICKL.,etal.,«Fishcaninfersocialrankbyobservation

alone », Nature, vol. 445, 2007, p. 429-432.
245. MCGREGORP.,etDOUTRELANTC.,«Eavesdroppingandmate

choice in female fighting fish », Behaviour, vol. 137, 2000, p. 1655-1668 ; voir aussi : DOUTRELANT C., et al., « The effect of an audience on intra- sexual communication in male siamese fighting fish, Betta splendens», Behav Ecol, vol. 12, 2001, p. 283-286.

246. CLOTFELTER E. D., et PAOLINO A. D., « Bystanders to contests between conspecifics are primed for increased aggression in male fighting fish », Anim Behav, vol. 66, 2003, p. 343-347.

247. MENNILL D. J., et al., «Female eavesdropping on male song contests in songbirds», Science, vol. 296, 2002, p. 873; OTTER K., DABELSTEEN T., et al., « Do female great tits (Parus major) assess males by eavesdropping? A field study using interactive song playback», Proc R Soc B, vol. 266, 1999, p. 1305-1309.

248. TEMPLETON C. N., et al., «Allometry of alarm calls: black- capped chickadees encode information about predator size», Science, vol. 308, 2005, p. 1934-1937.

249. TEMPLETON C. N., et GREENE E., « Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls », PNAS, vol. 104, 2007, p. 5479-5482; CARLSON N. V., et al., «Nuthatches vary their alarm calls based upon the source of the eavesdropped signals », Nat Com, vol. 11, no 526, 2020.

250. MARLER P., et TAMURA M., « Culturally transmitted patterns of vocal behavior in sparrows », Science, vol. 146, 1964, p. 1483-1486. 251. BAKERM.C.,«Birdsongresearch:thepast100years»,BirdBehav, vol. 14, 2001, p. 3-50 ; BARRINGTON D, « XXXI. Experiments and observations

on the singing of birds», Phil Trans R Soc, vol. 63, 1773, p. 249-291.

252. THORPEW.H.,«Thelearningofsongpatternsbybirds,withespecial reference to the song of the chaffinch fringilla coelebs», Ibis, vol. 100, 1958, p. 535-570 ; POULSEN H., « Inheritance and learning in the song of the chaffinch (Fringilla Coelebs L.) », Behaviour, vol. 3, 1951, p. 216-228.

253. MARLER P., et SLABBEKOORN H., Nature’s Music, ouvr. cité ; ARAYA-SALA M. et WRIGHT T., « Open-ended song learning in a hum- mingbird », Biol Let, vol. 9, 2013, 2013062 ; JOHNSON K. E. et CLARK C. J., «Ontogeny of vocal learning in a hummingbird», Anim Behav, vol. 167, 2020, p. 139-150.

254. KROODSMA D. E., et KONISHI M., « A suboscine bird (eastern phoebe, Sayornis phoebe) develops normal song without auditory feed- back », Anim Behav, vol. 42, 1991, p. 477-487.

255. LIU W., et al., « Rudimentary substrates for vocal learning in a suboscine », Nat Com, vol. 4, no 2082, 2013.

256. KROODSMA D., et al., « Behavioral evidence for song learning in the suboscine bellbirds (Procnias spp.; Cotingidae) », Wilson J Orn, vol. 125, 2013, p. 1-14.

257. MARLER P., «Three models of song learning: Evidence from behavior», J Neurobiol, vol. 33, 1997, p. 501-516; TCHERNICHOVSKI, et al., « Dynamics of the vocal imitation process : how a zebra finch learns its song », Science, vol. 291, 2001, p. 2564-2569.

258. BLOOMFIELDT.C.,etal.,«Whatbirdshavetosayaboutlanguage», Nat Neurosci, vol. 14, 2011, p. 947-948; LIPKIND D., et al., «Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants », Nature, vol. 498, 2013, p. 104-108; BRAINARD M. S., et DOUPE A. J., « What songbirds teach us about learning », Nature, vol. 417, 2002, p. 351- 358; DOUPE A. J., et KUHL P. K., «Birdsong and human speech: common themes and mechanisms », Ann Rev Neurosc, vol. 22, 1999, p. 567-631.

259. MENNILLD.J.,etal.,«Wildbirdslearnsongsfromexperimental vocal tutors », Cur Biol, vol. 28, 2018, p. 3273-3278.

260. METS D. G., et BRAINARD M. S., « Genetic variation interacts with experience to determine interindividual differences in learned song », PNAS, vol. 115, 2018, p. 421-426.

261. CAROUSO-PECKS.,etGOLDSTEINM.H.,«Femalesocialfeed- back reveals non-imitative mechanisms of vocal learning in zebra finches », Cur Biol, vol. 29, 2019, p. 631-636.

262. KROODSMAD.,«Thediversityandplasticityofbirdsong»,dans MARLER P., et SLABBEKOORN H., Nature’s Music, ouvr. cité, p. 108-131. 263. KLATT D. H., et STEFANSKI R. A., « How does a mynah bird

imitate human speech ? », JASA, vol. 55, 1974, p. 822-832.
264. NOWICKI S., et SEARCY W. A., « The evolution of vocal learn- ing », Cur Opin Neurobiol, vol. 28, 2014, p. 48-53 ; BEECHER M. D., et BRENOWITZ E. A., « Functional aspects of song learning in songbirds »,

Trends Ecol Evol, vol. 20, 2005, p. 143-149.
265. Voir aussi OSIEJUK T. S., et al., «Songbird presumed to be

age limited learner may change repertoire size and composition throughout their life », J Zool, vol. 309, 2019, p. 231-240.

266. KROODSMA D., «The diversity and plasticity of birdsong», art. cité.

267. ODOM K. J., et al., « Female song is widespread and ancestral in songbirds », Nat Com, vol. 5, no 3379, 2014 ; RIEBEL K., et al., «New insights from female bird song: towards an integrated approach to studying male and female communication roles», Biol Let, vol. 15, 2019, 20190059.

268. BOLHUIS J. J., et GAHR M., « Neural mechanisms of birdsong memory », Nature Rev Neurosci, vol. 7, 2006, p. 347-357.

269. MOONEY R., « The neurobiology of innate and learned vocal- izations in rodents and songbirds », Cur Opin Neurobiol, vol. 64, 2020, p. 24-31 ; THEUNISSEN F. E., et SHAEVITZ S. S., « Auditory processing of vocal sounds in birds », Cur Opin Neurobiol, vol. 16, 2006, p. 400-407 ; VAN RUIJSSEVELT L., et al., « fMRI reveals a novel region for evaluating acoustic information for mate choice in a female songbird», Cur Biol, vol. 28, 2018, p. 711-721.

270. NOTTEBOHMF.,etARNOLDA.P.,«Sexualdimorphisminvocal control areas of the songbird brain », Science, vol. 194, 1976, p. 211-213. 271. JARVIS E. D., et al., «Behaviourally driven gene expression reveals song nuclei in hummingbird brain », Nature, vol. 406, 2000,

p. 628-632.
272. THEUNISSEN F. E., et ELIE J. E., « Neural processing of natural

sounds », Nature Rev Neurosc, vol. 15, 2014, p. 355-366.
273. JARVIS E. D., « Neural systems for vocal learning in birds and humans : a synopsis », J Ornithol, 2007, p. 35-44 ; PRATHER J. F., et al.,

«Brains for birds and babies: Neural parallels between birdsong and speech acquisition », Neurosc Biobehav Rev, vol. 81, 2017, p. 225-237. 274. SUTHERS R. A., «How birds sing and why it matters», dans MARLER P., et SLABBEKOORN H., Nature’s Music, ouvr. cité, p. 272-295 ; GOLLER F., et LARSEN O. N., « A new mechanism of sound generation in songbirds », PNAS, vol. 94, 1997, p. 14787-14791 ; RIEDE T., et al., « The evolution of the syrinx : an acoustic theory », PLoS Biol, vol. 17,

2019, p. 1-22.
275. MOORMANS.,etal.,«Human-likebrainhemisphericdominance

in birdsong learning », PNAS, vol. 109, 2012, p. 12782-12787.
276. AMINN.,etal.,«Developmentofselectivityfornaturalsounds in the songbird auditory forebrain », J Neurophysiol, vol. 97, 2007,

p. 3517-3531.
277. DERÉGNAUCOURTS.,etal.,«Howsleepaffectsthedevelopmen-

tal learning of bird song », Nature, vol. 433, 2005, p. 710-716.
278. STICKGOLD R., « Sleep-dependent memory consolidation », Nature, vol. 437, 2005, p. 1272-1278 ; NUSBAUM H. C., et al., « Con- solidating skill learning through sleep », Cur Opin Behav Sc, vol. 20, 2018, p. 174-182 ; SALETIN J. M., « Memory : necessary for deep sleep ? », Cur

Biol, vol. 30, 2020, R234-R236.
279. KROODSMA D., The Singing Life Of Birds, Houghton Mifflin

Company, 2005 ; PRICE T., Speciation in birds, Roberts & Company Publishers, 2008.

280. IRWIN D. E., et al., « Speciation in a ring », Nature, vol. 409, 2001, p. 333-337.

281. HAUBER M.E., et al., « A password for species recognition in a brood-parasitic bird », Proc R Soc Lond B, vol. 268, 2001, p. 1041-1048. 282. LOUDER M. I. M., et al., «An acoustic password enhances auditory learning in juvenile brood parasitic cowbirds », Cur Biol, vol. 29,

2019, p. 4045-4051.
283. TYACK P. L., « A taxonomy for vocal learning », Phil Trans R

Soc B, vol. 375, 2019, 20180406 ; NIEDER A., et MOONEY R., « The neurobiology of innate, volitional and learned vocalizations in mammals and birds», Phil Trans R Soc B, vol. 375, 2019, 20190054.

284. PAYNE R., Among Whales, Simon & Schuster, 1995.

285. WHITEHEAD H., et RENDELL L., The Cultural Lives of Whales and Dolphins, ouvr. cité ; PAYNE K., et PAYNE R., « Large scale changes over 19 years in songs of humpback whales in bermuda », art. cité, p. 89-114; NOAD M. J., et al., «Cultural revolution in whale songs», art. cité, p. 537 ; GARLAND E. C., et al., « Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale », Cur Biol, vol. 21, 2011, p. 687-691.

286. RICHARDSD.G.,etal.,«Vocalmimicryofcomputer-generated sounds and vocal labeling of objects by a bottlenosed dolphin, Tursiops truncatus», J Comp Psychol, vol. 98, 1984, p. 10-28; JANIK V. M., et SAYIGH L. S., «Communication in bottlenose dolphins: 50 years of signature whistle research », art. cité.

287. EATON R. L., « A beluga whale imitates human speech », Car- nivore, vol. 2, 1979, p. 22-23 ; MURAYAMA T., et al., « Vocal imitation of human speech, synthetic sounds and beluga sounds, by a beluga (Delph- inapterus leucas) », Int J Comp Psychol, vol. 27, 2014, p. 369-384.

288. JANIK V. M., « Cetacean vocal learning and communication », Cur Opin Neurobiol, vol. 28, 2014, p. 60-65 ; RIDGWAY S., et al., « Spon- taneous human speech mimicry by a cetacean », Cur Biol, vol. 22, 2012, R860-R861 ; ABRAMSON J. Z., et al., « Imitation of novel conspecific and human speech sounds in the killer whale (Orcinus orca) », Proc R Soc B, vol. 285, 2018, 20172171.

289. REICHMUTH C., et CASEY C., «Vocal learning in seals, sea lions, and walruses », Cur Opin Neurobiol, vol. 28, 2014, p. 66-71.

290. STANSBURY A. L., et JANIK V. M., «Formant modification through vocal production learning in gray seals », Cur Biol, vol. 29, 2019, p. 2244-2249.

291. Toutlemonden’estpasdecetavis.VoirparexempleSCHUS- TERMAN R., « Vocal learning in mammals with special emphasis on pinni- peds », dans OLLER D. K AND GRIEBEL U., Evolution of Communicative Flexibility: Complexity, Creativity, And Adaptability in Human and Animal Communication, MIT Press, 2008, p. 41-70.

292. STOEGER A. S., et MANGER P., « Vocal learning in elephants : neural bases and adaptive context », Cur Opin Neurobiol, vol. 28, 2014, p. 101-107.

couverture.jpg
couverture.jpg
couverture.jpg
couverture.jpg

293. POOLE J. H., et al., « Elephants are capable of vocal learning », Nature, vol. 434, 2005, p. 455-456.

294. STOEGER A. S., et al., «An asian elephant imitates human speech », Cur Biol, vol. 22, 2012, p. 2144-2148.

295. VERNES S. C., et WILKINSON G. S., « Behaviour, biology and evolution of vocal learning in bats », Phil Trans R Soc B, vol. 375, 2019, 20190061 ; KNÖRNSCHILD M., « Vocal production learning in bats », Cur Opin Neurobiol, vol. 28, 2014, p. 80-85.

296. JONES G., et RANSOME R. D., « Echolocation calls of bats are influenced by maternal effects and change over a lifetime », Proc R Soc Lond B, vol. 252, 1993, p. 125-128.

297. PRAT Y., et al., « Vocal learning in a social mammal : Demon- strated by isolation and playback experiments in bats », Sc Adv, vol. 1, 2015, e1500019; voir aussi PRAT Y., et al., «Crowd vocal learning induces vocal dialects in bats : Playback of conspecifics shapes fundamental frequency usage by pups », PLoS Biol, vol. 15, 2017, e2002556.

298. KNÖRNSCHILD M., et al., «Complex vocal imitation during ontogeny in a bat », Biol Let, vol. 6, 2010, p. 156-159.

299. BROCKELMAN W. Y., et SCHILLING D., «Inheritance of stereo- typed gibbon calls », Nature, vol. 312, 1984, p. 634-636.

300. HAYES K. J., et HAYES C., « Imitation in a home-raised chim- panzee », J Comp Physiol Psychol, vol. 45, 1952, p. 450-459.

301. TAKAHASHID.Y.,etal.,«Thedevelopmentaldynamicsofmar- moset monkey vocal production », Science, vol. 349, 2015, p. 734-738 ; GULTEKIN Y. B., et HAGE S. R., « Limiting parental feedback disrupts vocal development in marmoset monkeys », Nat Com, vol. 8, no 14046, 2017.

302. LEVRERO F., et al., «Social shaping of voices does not impair phenotype matching of kinship in mandrills », Nat Com, vol. 6, no 7609, 2015.

303. Sur les interactions entre génétique et apprentissage, voir : METS D. G., et BRAINARD M. S., «Genetic variation interacts with experience to determine interindividual differences in learned song », art. cité, p. 421-426.

304. CélineRochaismènedesétudessurlesperformancescogni- tives de la Souris rayée en milieu naturel. Voir par exemple son article : ROCHAIS C., et al., « How does cognitive performance change in

relation to seasonal and experimental changes in blood glucose levels ? », Anim Behav, vol. 158, 2019, p. 149-159.

305. SCHRADIN C., « Seasonal changes in testosterone and corticos- terone levels in four social classes of a desert dwelling sociable rodent », Horm Behav, vol. 53, 2008, p. 573-579.

306. SCHRADIN C., et PILLAY N., «Intraspecific variation in the spatial and social organization of the African Striped Mouse », J Mammal, vol. 86, 2005, p. 99-107.

307. HOLYT.E.,etGUOZ.,«Ultrasonicsongsofmalemice»,PLoS Biol, vol. 3, 2005, e386.

308. GRIFFIN D. R., et GALAMBOS R., « The sensory basis of obsta- cle avoidance by flying bats », J Exp Zool, vol. 86, 1941, p. 481-506 ; GALAMBOS R., et GRIFFIN D. R., «Obstacle avoidance by flying bats: the cries of bats », J Exp Zool, vol. 89, 1942, p. 475-490 ; GRIFFIN D. R., « Supersonic cries of bats », Nature, vol. 158, 1946, p. 46-48.

309. SIMOLA N., et BRUDZYNSKI S. M., « Repertoire and biological function of ultrasonic vocalizations in adolescent and adult rats », dans BRUDZYNSKI S. (dir.), Handbook of Ultrasonic Vocalization, ouvr. cité, p. 177-186.

310. EHRETG.,«Characteristicsofvocalizationinadultmice»,dans ibid., p. 187-196.

311. FISCHER J., et HAMMERSCHMIDT K., « Ultrasonic vocalizations in mouse models for speech and socio cognitive disorders : insights into the evolution of vocal communication», Genes Brain Behav, vol. 10, 2010, p. 17-27.

312. PORTFORSC.V.,etPERKELD.J.,«Theroleofultrasonicvocal- izations in mouse communication », Cur Opin Neurobiol, vol. 28, 2014, p. 115-120 ; MIRANDA R., et al., « Altered social behavior and ultrasonic communication in the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy», Mol Autism, vol. 6, 2015, p. 60; FAURE A., et al., « Dissociated features of social cognition altered in mouse models of schizophrenia : Focus on social dominance and acoustic communication », Neuropharmacol, vol. 159, 2019, 107334.

313. PIERCEG.W.,TheSongsofInsects,HarvardUnivPress,1948.

314. PIERCEG.W.,etGRIFFIND.R.,«Experimentaldeterminationof supersonic notes emitted by bats », J Mammal, vol. 19, 1938, p. 454-455.

315. FENTON M. B., et al., Bat Bioacoustics, Springer, 2016.

316. ULANOVSKY N., et MOSS C. F., « What the bat’s voice tells the bat’s brain », PNAS, vol. 105, 2008, p. 8491-8498.

317. CAREW T. J., Behavioral Neurobiology, Sinauer, 2000.

318. SIMMONS J. A., et al., « Echo-delay resolution in sonar images of the big brown bat, Eptesicus fuscus», PNAS, vol. 95, 1998, p. 12647-12652.

319. SCHNITZLER H. U., « Control of doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum », J Comp Physiol, vol. 82, 1973, p. 79-92 ; METZNER W., « A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats», Nature, vol. 341, 1989, p. 529-532 ; METZNER W., et al., « Doppler-shift com- pensation behavior in horseshoe bats revisited : auditory feedback controls both a decrease and an increase in call frequency », J Exp Biol, vol. 205, 2002, p. 1607-1616.

320. SIMMONSJ.A.,«ResponseoftheDopplerecholocationsystemin the bat, Rhinolophus ferrumequinum », JASA, vol. 56, 1974, p. 672- 682 ; ZHANG Y., et al., « Performance of Doppler shift compensation in bats varies with species rather than with environmental clutter », Anim Behav, vol. 158, 2019, p. 109-120.

321. SCHNITZLER H.-U., et DENZINGER A., «Auditory fovea and Doppler shift compensation : adaptations for flutter detection in echolo- cating bats using CF-FM signals », J Comp Physiol A, vol. 197, 2011, p. 541-559.

322. YACKJ.E.,etFULLARDJ.H.,«Ultrasonichearinginnocturnal butterflies », Nature, vol. 403, 2000, p. 265-266.

323. GREENFIELD M. D., « Evolution of acoustic communication in insects », art. cité.

324. YACK J. E., et al., « Neuroethology of ultrasonic hearing in nocturnal butterflies (Hedyloidea) », J Comp Physiol A, vol. 193, 2007, p. 577-590.

325. KAWAHARA A. Y., et BARBER J. R., « Tempo and mode of anti- bat ultrasound production and sonar jamming in the diverse hawkmoth radiation », PNAS, vol. 112, 2015, p. 6407-6412.

326. CONNER W. E., et CORCORAN A. J., «Sound strategies: the 65-million-year-old battle between bats and insects », Ann Rev Entomol,

vol. 57, 2012, p. 21-39; TER HOFSTEDE H. M., et RATCLIFFE J. M., « Evolutionary escalation : the bat-moth arms race », J Exp Biol, vol. 219, 2016, p. 1589-1602.

327. VON HELVERSEN D., et VON HELVERSEN O., « Acoustic guide in bat-pollinated flower », Nature, vol. 398, 1999, p. 759-760.

328. FENG A. S., et NARINS P. M., «Ultrasonic communication in concave-eared torrent frogs (Amolops tormotus)», J Comp Physiol, vol. 194, 2008, p. 159-167.

329. FENG A. S., et al., «Ultrasonic communication in frogs», Nature, vol. 440, 2006, p. 333-336; SHEN J.-X., et al., «Ultrasonic frogs show hyperacute phonotaxis to female courtship calls », Nature, vol. 453, 2008, p. 914-916 ; GRIDI-PAPP M., et al., « Active control of ultrasonic hearing in frogs », PNAS, vol. 105, 2008, p. 11014-11019.

330. NARINS P. M., et al., «Plant-borne vibrations modulate calling behaviour in a tropical amphibian», Cur Biol, vol. 23, 2018, R1333-R1334 ; LEWIS E. R., et NARINS P. M., « Do frogs communicate with seismic signals?», Science, vol. 227, 1985, p. 187-189; NARINS P. M., «Seismic Communication in Anuran Amphibians», Bioscience, vol. 40, 1990, p. 268-274.

331. HAGER F. A., et al., dans Biotremology : Studying Vibrational Behavior, Springer, 2019, p. 309-327.

332. HAGER F. A., et KIRCHNER W. H., « Vibrational long-distance communication in the termites Macrotermes natalensis and Odontoter- mes sp. », J Exp Biol, vol. 216, 2013, p. 3249-3256.

333. On observe des choses similaires chez les abeilles, voir par exemple GRÜTER C., et al., « Propagation of olfactory information within the honeybee hive », Behav Ecol Sociobiol, vol. 60, 2006, p. 707-715.

334. HAGER F. A., et KIRCHNER W. H., «Directional vibration sensing in the termite Macrotermes natalensis», J Exp Biol, vol. 217, 2014, p. 2526-2530.

335. Voirlarecension:NARINSP.M.,etal.,«Infrasonicandseismic communication in the vertebrates with special emphasis on the afrotheria : an update and future directions», dans SUTHERS R. A., FITCH W. T., FAY R. R., et POPPER A. N. (dir.), Vertebrate Sound Production and Acoustic Communication, ouvr. cité, p. 191-227.

336. SCHLEICH C., et FRANCESCOLI G., « Three decades of subter- ranean acoustic communication studies », dans DENT M. L., FAY R. R., et POPPER A. N. (dir.), Rodent Bioacoustics, Springer, 2018, p. 43-69.

337. O’CONNELL-RODWELLC.E.,«Keepingan“ear”totheground: seismic communication in elephants », Physiology, vol. 22, 2007, p. 287- 294 ; O’CONNELL-RODWELL C. E., et al., « Wild African elephants (Lox- odonta africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls », JASA, vol. 122, 2007, p. 823-830.

338. O’CONNELL C. E., et al., «Vibrational communication in elephants: a case for bone conduction», dans HILL P., WESSEL, A. et al. (dir.), Biotremology : Studying Vibrational Behavior, Springer, 2019, p. 259-276.

339. MCCOMB K., et al., «Unusually extensive networks of vocal recognition in African elephants», Anim Behav, vol. 59, 2000, p. 1103-1109.

340. HOLEKAMP K. E., et KOLOWSKI J. M., «Family Hyaenidae (Hyenas) », dans WILSON D. E., et MITTERMEIER R. A. (dir.), Handbook of the Mammals of the World, t. I, Carnivores, Lynx Edicions, 2009, p. 234-251.

341. KRUUK H., The Spotted Hyena: A Study of Predation and Social Behaviour, Chicago Univ Press, 1972.

342. WATTS H. E., et HOLEKAMP K. E., «Hyena societies», Cur Biol, vol. 17, 2007, R657-R660.

343. YALCINKAYA T. M., et al., «A mechanism for virilization of female spotted hyenas in utero », Science, vol. 260, 1993, p. 1929-1931 ; GLICKMAN S. E., et al., «Androstenedione may organize or activate sex-reversed traits in female spotted hyenas», PNAS, vol. 84, 1987, p. 3444-3447.

344. HOLEKAMPK.E.,etSMALEL.,«Dominanceacquisitionduring mammalian social development: the “inheritance” of maternal rank», Amer Zool, vol. 31, 1991, p. 306-317 ; ENGH A. L., et al., « Mechanisms of maternal rank “inheritance” in the spotted hyaena, Crocuta crocuta », Anim Behav, vol. 60, 2000, p. 323-332.

345. SMITHJ.E.,etHOLEKAMPK.E.,s.v.«SpottedHyenas»,dans BREED M. D., et MOORE J. (dir.), Encyclopedia of Animal Behavior, 2e éd., Acad Press, 2019, p. 190-208.

346. ELIEJ.E.,etTHEUNISSENF.E.,«Zebrafinchesidentifyindivid- uals using vocal signatures unique to each call type », Nat Com, vol. 9, no 4026, 2018.

347. CHRISTIANSEN P. et ADOLFSEEN J. S., «Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora)», J Zool Lond, vol. 266, 2005, p. 133-151.

348. MATHEVON N., et al., «What the hyena’s laugh tells: Sex, age, dominance and individual signature in the giggling call of Crocuta crocuta », BMC Ecol, vol. 10, no 9, 2010.

349. ROSS-GILLESPIE A., et GRIFFIN A. S., « Meerkats », Cur Biol, vol. 17, 2007, R442-R443 ; GILCHRIST J. S., et al., « Family Herpesti- dae (Mongooses) » dans WILSON D. E., et MITTERMEIER R. A. (dir.), Handbook of the Mammals of the World, t. I, ouvr. cité, p. 262-328.

350. MANSERM.B.,«Theacousticstructureofsuricates’alarmcalls varies with predator type and the level of response urgency », Proc R Soc Lond B, vol. 268, 2001, p. 2315-2324 ; MANSER M. B., et al., « The information that receivers extract from alarm calls in suricates », Proc R Soc Lond B, vol. 268, 2001, p. 2485-2491.

351. TOWNSENDS.W.,etal.,«Acousticcuestoidentityandpredator context in meerkat barks », Anim Behav, vol. 94, 2014, p. 143-149.

352. MANSER M. B., « Semantic communication in vervet monkeys and other animals », Anim Behav, vol. 86, 2013, p. 491-496 ; RAUBER R., KRANSTAUBER B., et MANSER M. B., « Call order within vocal sequences of meerkats contain temporary contextual and individual information », BMC Biol, vol. 18, 2020, 119.

353. HOLLÉN L. I, et MANSER M. B., « Ontogeny of alarm call responses in meerkats, Suricata suricatta : the roles of age, sex and nearby conspecifics », Anim Behav, vol. 72, 2006, p. 1345-1353.

354. DARWINC.,Ladescendancedel’hommeetlasélectionsexuelle, ouvr. cité.

355. STRUHSAKER T. T., «Auditory communication among vervet monkeys (Cercopithecus aetthiops)», dans ALTMANN S. A. (dir.), Social Communication Among Primates, Univ Chicago Press, 1967, p. 281-324.

356. SEYFARTH R. M., et al., «Monkey responses to three dif- ferent alarm calls : evidence of predator classification and semantic

communication », Science, vol. 210, 1980, p. 801-803 ; PRICE T., et al., «Vervets revisited: A quantitative analysis of alarm call structure and context specificity », Sc Rep, vol. 5, 2015, 13220.

357. CHENEY D. L., et SEYFARTH R. M., How Monkeys See the World, Univ Chicago Press, 1990.

358. PREMACK D., «Concordant preferences as a precondition for affective but not for symbolic communication (or How to do experimental anthropology) », Cognition, vol. 1, 1972, p. 251-264.

359. ZUBERBÜHLER K., «Referential labelling in Diana monkeys», Anim Behav, vol. 59, 2000, p. 917-927.

360. Id.,«Asyntacticruleinforestmonkeycommunication»,Anim Behav, vol. 63, 2002, p. 293-299.

361. RENDALLD.,etal.,«Themeaningandfunctionofgruntvariants in baboons », Anim Behav, vol. 57, 1999, p. 583-592.

362. CAESARC.,etal.,«Thealarmcallsystemofwildblack-fronted titi monkeys, Callicebus nigrifrons », Behav Ecol Sociobiol, vol. 66, 2012, p. 653-667.

363. PEREIRA M. E., et MACEDONIA J. M., « Ringtailed lemur anti- predator calls denote predator class, not response urgency », Anim Behav, vol. 26, 1991, p. 760-777.

364. SCHELA.M.,etZUBERBÜHLERK.,«Predatorandnon-predator long-distance calls in Guereza colobus monkeys », Behav Process, vol. 91, 2012, p. 41-49.

365. OUATTARAK.,etal.,«Campbell’smonkeysconcatenatevocal- izations into context-specific call sequences», PNAS, vol. 106, 2009, p. 22026-22031.

366. ZUBERBÜHLER K., et al., «Diana monkey long-distance calls: messages for conspecifics and predators », Anim Behav, vol. 53, 1997, p. 589-604.

367. SLOCOMBEK.E.,etZUBERBÜHLERK.,«Functionallyreferential communication in a chimpanzee », Cur Biol, vol. 15, 2005, p. 1779-1784. 368. CLAYZ.,etZUBERBÜHLERK.,«Food-associatedcallingsequences

in bonobos », Anim Behav, vol. 77, 2009, p. 1387-1396.
369. TOWNSENDS.W.,etMANSERM.B.,«FunctionallyReferential communication in mammals : the past, present and the future », Ethology,

vol. 119, 2013, p. 1-11.

370. KIRIAZIS J., et SLOBODCHIKOFF C. N., « Perceptual specificity in the alarm calls of Gunnison’s prairie dogs », Behav Process, vol. 73, 2006, p. 29-35.

371. SMITH C. L., « Referential signalling in birds : the past, present and future », Anim Behav, vol. 124, 2017, p. 315-323.

372. MARLER P., et al., « Semantics of an avian alarm call system : the male domestic fowl, Gallus Domesticus », Behaviour, vol. 102, 1987, p. 15-40; EVANS C. S., et EVANS L., «Chicken food calls are functionally referential», Anim Behav, vol. 58, 1999, p. 307-319; EVANS C. S., et EVANS L., «Representational signalling in birds», Biol Let, vol. 3, 2007, p. 8-11.

373. EVANS C. S., et al., « Effects of apparent size and speed on the response of chickens, Gallus gallus, to computer-generated simulations of aerial predators », Anim Behav, vol. 46, 1993, 1-11.

374. GILL S. A., et BIEREMA A. M. K., « On the meaning of alarm calls : a review of functional reference in avian alarm calling », Ethology, vol. 119, 2012, p. 449-461.

375. MAGRATH R., et al., « Interspecific communication : gain- ing information from heterospecific alarm calls », dans AUBIN T. et MATHEVON N. (dir.), Coding strategies in vertebrate acoustic communi- cation, ouvr. cité, p. 287-314.

376. TEMPLETON C. N., et al., «Allometry of alarm calls: black- capped chickadees encode information about predator siz », Science, vol. 308, 2005, p. 1934-1937.

377. SUZUKI T. N., « Communication about predator type by a bird using discrete, graded and combinatorial variation in alarm calls », Anim Behav, vol. 87, 2014, p. 59-65; SUZUKI T. N., «Referential mobbing calls elicit different predator-searching behaviours in Japanese great tits », Anim Behav, vol. 84, 2012, p. 53-57; SUZUKI T. N., et al., «Experi- mental evidence for compositional syntax in bird calls », Nat Com, vol. 7, no 10986, 2016.

378. SUZUKI T. N., «Alarm calls evoke a visual search image of a predator in birds », PNAS, vol. 115, 2018, p. 1541-1545.

379. ENGESSER S., et al., « Meaningful call combinations and com- positional processing in the southern pied babbler», PNAS, vol. 113, 2016, p. 5976-5981.

380. ENGESSER S., et al., « Chestnut-crowned babbler calls are com- posed of meaningless shared building blocks», PNAS, vol. 116, 2019, p. 19579-19584.

381. SEYFARTH R. M., et CHENEY D. L., « Precursors to language : social cognition and pragmatic inference in primates », Psychon Bull Rev, vol. 24, 2017, p. 79-84.

382. CHENEYD.L.,etSEYFARTHR.M.,BaboonMetaphysics,Univ Chicago Press, 2007.

383. MATHEVON N., ACOSTA J. G., et al., «The code size: Behavioural response of crocodile mothers to offspring calls depends on the emitter’s size, not on its species identity », dans Crocodiles, Proceed- ings of the 24th meeting of the Crocodile Specialist Group IUCN, 2016, p. 79-85.

384. DARWIN C., The Expression of Emotions in Man and Animals, Penguin Classics, 2009.

385. BRIEFER E. F., «Coding for “dynamic” information: vocal expression of emotional arousal and valence in non-human animals», dans AUBIN T. et MATHEVON N. (dir.), Coding Strategies in Vertebrate Acoustic Communication, ouvr. cité, p. 137-162.

386. BRIEFER E. F., et al., «Segregation of information about emo- tional arousal and valence in horse whinnies », Scientific Reports, vol. 5, no 9989, 2015.

387. Les choses sont en réalité encore plus compliquées, car chacune de ces fréquences F0 et G0 est accompagnée de sa série harmonique. Pour des détails, voir BRIEFER E. F., et al., ibid.

388. BRIEFER E. F., «Vocal expression of emotions in mammals: mechanisms of production and evidence », J Zool, vol. 288, 2012, p. 1-20. 389. DARWIN C., The Descent of Man and Selection in Relation to

Sex, John Murray, 1871.
390. MORTON E. S., «On the occurrence and significance of

motivation-structural rules in some bird and mammal sounds », Am Nat, vol. 111, 1977, p. 855-869.

391. KOUTSEFF A., et al., « The acoustic space of pain : cries as indi- cators of distress recovering dynamics in pre-verbal infants », Bioacoustics, vol. 27, 2018, p. 313-325.

392. FILIPPIP.,etal.,«Humansrecognizeemotionalarousalinvocal- izations across all classes of terrestrial vertebrates : evidence for acoustic universals », Proc R Soc B, vol. 284, 2017, 20170990.

393. LINGLE S., et RIEDE T., « Deer mothers are sensitive to infant distress vocalizations of diverse mammalian species », Am Nat, vol. 184, 2014, p. 510-522.

394. KELLYT.,etal.,«Adulthumanperceptionofdistressinthecries of bonobo, chimpanzee, and human infants », Biol J Lin Soc, vol. 120, 2017, p. 919-930.

395. BRIEFER E. F., «Vocal contagion of emotions in non-human animals », Proc R Soc B, vol. 285, 2018, 20172783.

396. VIGNAL C., et al., « Audience drives male songbird response to partner’s voice », art. cité.

397. PEREZE.C.,etal.,«Theacousticexpressionofstressinasong- bird : Does corticosterone drive isolation-induced modifications of zebra finch calls ? », Horm Behav, vol. 61, 2012, p. 573-581.

398. PEREZ E. C., et al., «Physiological resonance between mates through calls as possible evidence of empathic processes in songbirds», Horm Behav, vol. 75, 2015, p. 130-141.

399.BEN-ADERETT.,etal.,«Dog-directedspeech:whydoweuse it and do dogs pay attention to it ? », Proc R Soc B, vol. 284, 2017, 20162429.

400. FITRI AZHARI, « Bird strike case study at airport level to include take off, landing and taxiways», Adv J Tech Voc Educ, vol. 1, 2017, p. 364-374.

401. AUBINT.,etBRÉMONDJ.-C.,«Parametersusedforrecognition of distress calls in two species : Larus argentatus and Sturnus vulgaris », Bioacoustics, vol. 2, 1999, p. 22-33; AUBIN T., et BRÉMOND J.-C., « perception of distress call harmonic structure by the starling (Sturnus vul- garis) », Behaviour, vol. 120, 1992, p. 3-4 ; BRÉMOND J.-C., et AUBIN T., « Responses to distress calls by black-headed gulls, Larus ridibundus : the role of non-degraded features », Anim Behav, vol. 39, 1990, p. 503-511.

402. AUBINT.,«Whydodistresscallsevokeinterspecificresponses? An experimental study applied to some species of birds», Behav Proc, vol. 23, 1991, p. 103-111.

403. DENTRESSANGLE F., et al., «Males use time whereas females prefer harmony : individual call recognition in the dimorphic blue-footed booby », Anim Behav, vol. 84, 2012, p. 413-420.

404. VIGNAL C., «Biologie du comportement animal», MATHE- VON N., et VIENNOT É. (dir.), La différence des sexes, ouvr. cité, p. 53-80. 405. GREEN K. K., et MADJIDIAN J. A., «Active males, reactive females : stereotypic sex roles in sexual conflict research ? », Anim Behav,

vol. 81, 2011, p. 901-907.
406. BOURGEOISK.,etal.,«Morphologicalversusacousticanalysis:

what is the most efficient method for sexing yelkouan shearwaters Puffinus yelkouan ? », J Ornithol, vol. 148, 2007, p. 261-269.

407. CURÉ C., et al., « Sex discrimination and mate recognition by voice in the yelkouan shearwater puffinus yelkouan», Bioacoustics, vol. 20, 2011, p. 235-250 ; CURÉ C., et al., « Mate vocal recognition in the Scopoli’s shearwater Calonectris diomedea : do females and males share the same acoustic code ? », Behav Process, vol. 128, 2016, p. 96-102.

408. CURÉC.,etal.,«Acousticcuesusedforspeciesrecognitioncan differ between sexes and sibling species : evidence in shearwaters », Anim Behav, vol. 84, 2012, p. 239-250 ; CURÉ C., et al., « Acoustic conver- gence and divergence in two sympatric burrowing nocturnal seabirds», Biol J Lin Soc, vol. 96, 2009, p. 115-134 ; CURÉ C., et al., « Intra-sex vocal interactions in two hybridizing seabird species (Puffinus sp.) », Behav Ecol Sociobiol, vol. 64, 2010, p. 1823-1837.

409. MOUTERDE S. C., dans AUBIN T. et MATHEVON N. (dir.), Coding strategies in vertebrate acoustic communication, ouvr. cité, p. 203-229.

410. MOUTERDE S. C., et al., « Acoustic communication and sound degradation : how do the individual signatures of male and female zebra finch calls transmit over distance ? », PLoS One, vol. 9, 2014, e102842.

411. MOUTERDE S. C., et al., « Learning to cope with degraded sounds : female zebra finches can improve their expertise in discriminat- ing between male voices at long distances », J Exp Biol, vol. 217, 2014, p. 3169-3177.

412. MOUTERDE S. C., et al., « Single neurons in the avian auditory cortex encode individual identity and propagation distance in naturally degraded communication calls », J Neuro, vol. 37, 2017, p. 3491-3510.

413. DARWIN C., The origin of species, 1859.

414. ODOM K. J., et al., « Female song is widespread and ancestral in songbirds », art. cité.

415. OLIVEROSC.H.,etal.,«Earthhistoryandthepasserinesuper- radiation », PNAS, vol. 116, 2019, p. 7916-7925.

416. GAHR M., dans AUBIN T. et MATHEVON N. (dir.), Coding strategies in vertebrate acoustic communication, ouvr. cité, p. 163-201. 417. ODOM J. K., et al., «Differentiating the evolution of female song and male-female duets in the New World blackbirds : Can tropical natural history traits explain duet evolution ? », Evolution, vol. 69, 2015, p. 839-847 ; ELIE J. E., et al., « Vocal communication at the nest between mates in wild zebra finches : a private vocal duet ? », Anim Behav, vol. 80,

2010, p. 597-605.
418. FORTUNEE.S.,etal.,«Neuralmechanismsforthecoordination

of duet singing in wrens », Science, vol. 334, 2011, p. 666-670 ; COLE- MAN M., et FORTUNE E., « Duet singing in plain-tailed wrens », Cur Biol, vol. 28, 2018, R1-R3.

419. Une autre étude, menée en milieu sauvage, a porté sur les mécanismes de coordination vocale chez un oiseau, le moineau tisserin : HOFFMANN S., et al., « Duets recorded in the wild reveal that interindividually coordinated motor control enables cooperative behavior », Nat Com, vol. 10, no 2577, 2019.

420. LEVRÉRO F., «Éthologie des primates non humains», dans MATHEVON N., et VIENNOT É. (dir.), La différence des sexes, ouvr. cité, p. 277-304.

421. BRUNTON P. J., et RUSSEL J. A., «The expectant brain: adapting for motherhood», Nat Rev Neurosci, vol. 9, 2008, p. 11-25; HOEKZEMA E., et al., « Pregnancy leads to long-lasting changes in human brain structure», Nat Neurosci, vol. 20, 2017, p. 287-296; KIM P., et al., « The maternal brain and its plasticity in humans », Horm Behav, vol. 77, 2016, p. 113-123.

422. HRDY S. B., « The neurobiology of paternal care. Cooperative breeding and the paradox of facultative fathering», dans Neurobiology of the Parental Brain, Burlington, 2008, p. 207-222.

423. WIESENFELD A. R., et al., «Differential parental response to familiar and unfamiliar infant distress signals », Infant Behav Dev, vol. 4,

1981, p. 281-295 ; GREEN J. A., et GUSTAFSON G. E., « Individual rec- ognition of human infants on the basis of cries alone », Dev Psychobiol, vol. 16, 1983, p. 485-493.

424. GUSTAFSSON E., et al., « Fathers are just as good as mothers at recognizing the cries of their baby », Nat Com, vol. 4, no 1698, 2013.

425. BOUCHET H., et al., «Baby cry recognition is independent of motherhood but improved by experience and exposure », Proc R Soc B, vol. 287, 2020, 20192499.

426. REBY D., et al., « Sex stereotypes influence adults “perception of babies” cries », BMC Psychol, vol. 4, no 19, 2016.

427. MARIN-CUDRAZ T., et al., « Acoustic monitoring of rock ptar- migan : A multi-year comparison with point-count protocol », Ecol Indic, vol. 101, 2019, p. 710-719.

428. ULLOAJ.S.,etal.,«Screeninglargeaudiodatasetstodetermine the time and space distribution of Screaming Piha birds in a tropical for- est », Ecol Infor, vol. 31, 2016, p. 91-99 ; ULLOA J. S., et al., « Explo- sive breeding in tropical anurans: environmental triggers, community composition and acoustic structure », BMC Ecol, vol. 19, no 28, 2019 ; DUCRETTET M., et al., « Acoustic monitoring of the White-throated Toucan (Ramphastos tucanus) in disturbed tropical landscapes», Biol Conserv, vol. 245, 2020, p. 108574.

429. SUEUR J., et FARINA A., « Ecoacoustics : the ecological investi- gation and interpretation of environmental sound », Biosemiotics, vol. 8, 2015, p. 493-502.

430. Je vous invite à regarder ces quelques interviews et confé- rences de Bernie Krause. Un grand monsieur. « La voix du monde naturel», TedGlobal 2013; et sur la chaîne YouTube Fondation Cartier pour l’art contemporain: «Nuit des Animaux, par Bernie Krause et Jean-Claude Ameisen | 2016 », 12 avril 2017 ; « L’Entre- tien Infini - Bernie Krause - Conversation avec Hans Ulrich Obrist – 2019 », 4 décembre 2019.

431. KRAUSE B., Le grand orchestre animal, Paris, Flammarion, 2013.

432. SUEUR J., et al., «climate change is breaking Earth’s beat», Trends Ecol Evol, vol. 34, 2019, p. 971-973.

433. BRUMMH.,AnimalCommunicationandNoise,Springer,2013.

434. KUNC H. P., et SCHMIDT R., «The effects of anthropogenic noise on animals : a meta-analysis », Biol Let, vol. 15, 2019, 20190649 ; RABOIN M., et ELIAS D. O., « Anthropogenic noise and the bioacoustics of terrestrial invertebrates », J Exp Biol, vol. 222, 2019, jeb178749.

435. POPPERA.N.,etal.,«Takingtheanimals’perspectiveregarding anthropogenic underwater sound», Trends Ecol Evol, vol. 35, 2020, p. 787-794.

436. WENSVEENP.J.,etal.,«Northernbottlenosewhalesinapristine environment respond strongly to close and distant navy sonar signals », Proc R Soc B, vol. 286, 2019, 20182592.

437. MCCAULEY R. D., et al., « Widely used marine seismic survey air gun operations negatively impact zooplankton », Nat Ecol Evol, vol. 1, no 0195, 2017.

438. BRUMMH.,«Theimpactofenvironmentalnoiseonsongampli- tude in a territorial bird », J Anim Ecol, vol. 73, 2004, p. 434-440.

439. GUAZZOR.A.,etal.,«TheLombardeffectinsinginghumpback whales: Source levels increase as ambient ocean noise levels increase», JASA, vol. 148, 2020.

440. SLABBEKOORN H., et PEET M., « Birds sing at a higher pitch in urban noise », Nature, vol. 424, 2003, p. 267.

441. NEMETH E., et al., « Bird song and anthropogenic noise : vocal constraints may explain why birds sing higher-frequency songs in cities », Proc R Soc B, vol. 280, 2013, 20122798.

442. ZOLLINGER S. A., et al., «Higher songs of city birds may not be an individual response to noise », Proc R Soc B, vol. 284, 2017, 20170602.

443. DERRYBERRY E. P., et al., «Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown », Science, 2020.

444. GALLEGO-ABENZAM.,etal.,«Experiencemodulatesaninsect’s response to anthropogenic noise », Behav Ecol, vol. 31, 2020, p. 90-96. 445. HANACHE P., et al., « Noise induced reduction in the attack rate of a planktivorous freshwater fish revealed by functional response

analysis », Fresh Biol, vol. 65, 2020, p. 75-85.
446. Voircependant:FRANCISC.D.,etal.,«Noisepollutionalters

ecological services: enhanced pollination and disrupted seed dispersal»,

Proc R Soc B, vol. 279, 2012, p. 2727-2735; FRANCIS C. D., et al., «Noise pollution changes avian communities and species interactions», Cur Biol, vol. 19, 2009, p. 1415-1419 ; FRANCIS C. D., et al., « Noise pollution filters bird communities based on vocal frequency », PLoS ONE, vol. 6, 2011, e27052.

447. FARINA A., Soundscape ecology : Principles, patterns, methods and applications, Springer, 2014 ; MULLET T. C., et al., « The acoustic habitat hypothesis : an ecoacoustics perspective on species habitat selec- tion », Biosemiotics, vol. 10, 2017, p. 319-336.

448. BEGON M., et al., Ecology, from Individuals to Ecosystems, 4e éd., Blackwell, 2006.

449. KRAUSEB.L.,«Nichehypothesis:avirtualsymphonyofanimal sounds, the origins of musical expression and the health of habitats », Sound Newslet, vol. 6, 1993, p. 6-10.

450. SUEURJ.,etal.,«Acousticindicesforbiodiversityassessmentand landscape investigation », Acta Acust Acust, vol. 100, 2014, p. 772-781. 451. BRÉMOND J.-C., «Acoustic competition between the song of the wren (Troglodytes troglodytes) and the songs of other species»,

Behaviour, vol. 65, 1978, p. 89-98.
452. AMEZQUITA A., et al., « Acoustic interference and recognition

space within a complex assemblage of dendrobatid frogs», art. cité; TOBIAS J. A., et al., «Species interactions and the structure of complex communication networks », art. cité ; SUEUR J., « Cicada acoustic com- munication: potential sound partitioning in a multispecies community from Mexico (Hemiptera : Cicadomorpha : Cicadidae) », Biol J Lin Soc, vol. 75, 2002, p. 379-394 ; LUTHER D., « The influence of the acoustic community on songs of birds in a neotropical rain forest », Behav Ecol, vol. 20, 2009, p. 864-871 ; SCHMIDT A. K. D., et BALAKRISHNAN R., « Ecology of acoustic signalling and the problem of masking interference in insects », J Comp Physiol A, vol. 201, 2014, p. 133-142 ; RUPPÉ L., et al., « Environmental constraints drive the partitioning of the soundscape in fishes », PNAS, vol. 12, 2015, p. 6092-6097 ; SCHMIDT A. K. D., et al., « Spectral niche segregation and community organization in a tropical cricket assemblage», Behav Ecol, vol. 24, 2012, p. 470-480; BALAKRISHNAN R., « Behavioral ecology of insect acoustic communica- tion », dans POLLACK G. S., MASON A. C., POPPER A., FAY R. R. (dir.),

Insect Hearing, ouvr. cité, p. 49-80 ; CHITNIS S. S., et al., « Sympatric wren-warblers partition acoustic signal space and song perch height», Behav Ecol, vol. 31, 2020, p. 559-567 ; BERTUCCI F., et al., « Local sonic activity reveals potential partitioning in a coral reef fish community », Oecologia, vol. 193, 2020, p. 125-134.

453. BONCORAGLIO G., et SAINO N., «Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis », Funct Ecol, vol. 21, 2007, p. 134-142 ; EY E., et FISCHER J., « The “acoustic adaptation hypothesis” – a review of the evidence from birds, anurans and mammals », Bioacoustics, vol. 19, 2009, p. 21-48.

454. Oualorsl’émetteurutiliseunestratégierenforçantlaportée de ses signaux, comme certains insectes qui se positionnent judi- cieusement dans l’environnement. Voir MONTEALEGRE-Z. F., et al., « Generation of extreme ultrasonics in rainforest katydids », J Exp Biol, vol. 209, 2006, p. 4923-4937.

455. MORTON E. S., «Ecological sources of selection on avian sounds », Am Nat, vol. 109, 1975, p. 17-34 ; MORTON E. S., « On the occurrence and significance of motivation-structural rules in some bird and mammal sounds », Am Nat, vol. 111, 1977, p. 855-869 ; MARTEN K., et MARLER P., « Sound transmission and its significance for animal vocaliza- tion », Behav Ecol Sociobiol, vol. 2, 1977, p. 271-290 ; WILEY R. H., et RICHARDS D. G., « Physical constraints on acoustic communication in the atmosphere : implications for the evolution of animal vocalizations », Behav Ecol Sociobiol, vol. 3, 1978, p. 69-94 ; RICHARDS D. G., et WILEY R. H., « Reverberations and amplitude fluctuations in the propagation of sound in a forest : implications for animal communication », Am Nat, vol. 115, 1980, p. 381-399.

456. KLUMP G. M., «Bird communication in the noisy world», dans BARTH, F. G., et SCHMID, A., Ecology of Sensing — Ecology and Evolution of Acoustic Communication in Birds, Cornell Univ Press, 1996, p. 321-338.

457. GOUTTE S., et al., « How the environment shapes animal sig- nals : a test of the acoustic adaptation hypothesis in frogs », J Evol Biol, vol. 31, 2017, p. 148-158.

458. VoircesdeuxarticlesécritsparJérômeSueursurTheConver- sation : « L’éco-acoustique, écouter la nature pour mieux la préserver », 13 février 2020 ; « Dans le silence du virus : quels effets sur les êtres vivants ? », 24 mars 2020.

459. SUEURJ.,etal.,«Acousticindicesforbiodiversityassessmentand landscape investigation », Acta Acust Acust, vol. 100, 2014, p. 772-781. 460. Voirparexemple:DEPRAETEREM.,etal.,«Monitoringanimal diversity using acoustic indices: Implementation in a temperate wood- land », Ecol Indic, vol. 13, 2012, p. 46-54 ; GASC A., et al., « Assessing biodiversity with sound : Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities?», Ecol Indic, vol. 25, 2013, p. 279-287 ; LINKE S., et al., « Freshwater ecoacoustics as a tool for continuous ecosystem monitoring », Front Ecol Environ, vol. 16, 2018, p. 231-238 ; ULLOA J. S., et al., « Estimating animal acoustic diversity in tropical environments using unsupervised multiresolution analysis », Ecol Indic, vol. 90, 2018, p. 346-355 ; VAN DER LEE G. H., et al., « Freshwater ecoacoustics : Listening to the ecological status of multi-stressed lowland

waters », Ecol Indic, vol. 113, 2020, 106252.
461. De tels programmes d’éco-acoustique sont déjà en place.

Voir le site http://ear.cnrs.fr/ pour des exemples.
462. MBU NYAMSI R. G., et al., «On the extraction of some time

dependent parameters of an acoustic signal by means of the analytic signal concept. its application to animal sound study», Bioacoustics, vol. 5, 1994, p. 187-203.

463. Véridique.VoirDENOVIONC.,etal.,«L’impactdesconcepts de Pierre-Gilles de Gennes sur l’innovation en France dans le domaine des matériaux », Reflets Phys, vol. 56, 2018, p. 10-19.

464. HAUSERM.D.,etal.,«Thefacultyoflanguage:whatisit,who has it, and how did it evolve ? », Science, vol. 298, 2002, p. 1569-1579. 465. PRATY.,«Animalshavenolanguage,andHumansareanimals

too », Pers Psychol Sc, vol. 14, 2019, p. 885-893.
466. Des recherches récentes tentent de trouver des règles d’or-

ganisation à grande échelle dans les vocalisations animales. Voir par exemple MARKOWITZ J. E., et al., «Long-range order in canary song », PLoS Comp Biol, vol. 9, 2013, e1003052 ; SAINBURG T., et al.,

« Parallels in the sequential organization of birdsong and human speech », Nat Com, vol. 10, no 3636, 2019.

467. PISANSKI K., et al., «Voice modulation: a window into the origins of human vocal control?», Trends Cogn Sci, vol. 20, 2016, 304-318.

468. FAVARO L., et al., «Do penguins’vocal sequences conform to linguistic laws ? », Biol Let, vol. 16, 2020, 20190589.

469. HUANG M., et al., « Male gibbon loud morning calls conform to Zipf’s law of brevity and Menzerath’s law: insights into the origin of human language », Anim Behav, vol. 160, 2020, p. 145-155.

470. POUGNAULT L., et al., « Conversation among primate spe- cies », dans MASATAKA N. (dir.), The origins of language revisited, t. II, Springer, 2020.

471. RAVIGNANI A., et al., « Interactive rhythms across species : the evolutionary biology of animal chorusing and turn taking », Ann NY Acad Sc, vol. 1453, 2019, p. 12-21.

472. DEMARTSEV V., et al., «Vocal turn-taking in meerkat group calling sessions », Cur Biol, vol. 28, 2018, p. 3661-3666.

473. POUGNAULTL.,etal.,«Breakingconversationalrulesmatterstocaptive gorillas : A playback experiment », Sc Rep, vol. 10, no 6947, 2020.

474. Pouruneintroductiondétailléeetillustréedusujet,voirle cours de Stanislas Dehaene intitulé « Origine du langage et singu- larité de l’espèce humaine» : https://www.college-de-france.fr/site/ stanislas-dehaene/course-2018-01-08-09h30.htm.

475. SCHLENKER P., et al., « What do monkey calls mean ? », Trends Cogn Sc, vol. 20, 2016, p. 894-904.

476. FITCH W. T., « Animal cognition and the evolution of human language: why we cannot focus solely on communication», Phil Trans R Soc B, vol. 375, 2019, 20190046.

477. LYN H., et al., «Apes and the evolution of language: Taking stock of 40 years of research», dans Oxford handbook of comparative evolutionary psychology New York, Oxford University Press, p. 356- 378; KRAUSE M. A., et BERAN M. J., «Words matter: Reflections on language projects with chimpanzees and their implications », Am J Primat, vol. 82, 2020, e23187.

478. HAYES K. J., et HAYES C., «The intellectual development of a home-raised chimpanzee », Proc Amer Phil Soc, vol. 95, 1951, p. 105-109.

479. GARDNER R. A., et GARDNER B. T., « Teaching sign language to a chimpanzee », Science, vol. 165, 1969, p. 664-672.

480. TERRACE H. S., Why Chimpanzees Can’t Learn Language and only Humans Can, Columbia Univ Press, 2019.

481. Id.,«Cananapecreateasentence?»,Science,vol.206,1979, p. 891-902.

482. Il y eu aussi des expériences avec un orang-outan et un gorille. Voir SHETTLEWORTH S. J., Cognition, Evolution and Behavior, Oxford Univ Press, 2010.

483. MATSUZAWA T., « Use of numbers by a chimpanzee », Nature, vol. 315, 1985, p. 57-59.

484. Sur les différents projets visant à apprendre à parler à des singes, voir la recension: RISTAU C. A., et ROBBINS D., «Language in the Great Apes: A critical review», Adv St Behav, vol. 12, 1982, p. 141-255. Pour un point de vue récent : BERGMAN T. J., et al., « The speech-like properties of nonhuman primate vocalizations », Anim Behav, vol. 151, 2019, p. 229-237.

485. PEPPERBERGI.M.,TheAlexstudies,HarvardUnivPress,2000.

486. LIEBERMAN P. H., et al., « Vocal tract limitations on the vowel repertoires of rhesus monkey and other nonhuman primates», Science, vol. 164, 1969, p. 1185-1187.

487. FITCH W. T., et al., «Monkey vocal tracts are speech-ready», Sc Adv, vol. 2, 2016, e1600723.

488. MEYER J., dans AUBIN T. et MATHEVON N. (dir.), Coding strategies in vertebrate acoustic communication, ouvr. cité, p. 91-113.

489. VARGHA-KHADEM F., et al., « FOXP2 and the neuroanatomy of speech and language », Nat Rev Neurosc, vol. 6, 2005, p. 131-138. 490. LAI C. S., et al., «A forkhead-domain gene is mutated in a

severe speech and language disorder », Nature, vol. 413, 2002, p. 519- 523 ; FISHER S. E., et al., « Localisation of a gene implicated in a severe speech and language disorder », Nat Genet, vol. 18, 1998, p. 168-170 ; LIÉGEOIS F., et al., « Language fMRI abnormalities associated with FOXP2 gene mutation », Nat Neurosc, vol. 6, 2003, p. 1230-1237.

491. ENARD W., et al., «Molecular evolution of FOXP2, a gene involved in speech and language », Nature, vol. 418, 2002, p. 869-872. 492. FISHERS.E.,etSCHARFFC.,«FOXP2asamolecularwindow

into speech and language», Trends Gen, vol. 25, 2009, p. 166-177. 493. HAESLER S., et al., « FoxP2 expression in avian vocal learners

and non-learners », J Neurosc, vol. 24, 2004, p. 3164-3175.
494. PFENNINGA.R.,etal.,«Convergenttranscriptionalspecializa- tions in the brains of humans and song-learning birds », Science, vol. 346,

2014, 1256846.
495. FISHERS.E.,«Humangenetics:theevolvingstoryofFOXP2»,

Cur Biol, vol. 29, 2019, R50-R70.
496. Sivoussouhaitezapprofondirl’histoireévolutivedulangage

parlé humain, je vous recommande l’article clair, bien documenté et très accessible : FITCH W. T., « The biology and evolution of speech : a comparative analysis », Annu Rev Linguist, vol. 4, 2018, p. 255-279 ; ainsi que le livre : id., The Evolution of Language, Cambridge, 2012.

497. DARWINC.,Ladescendancedel’hommeetlasélectionsexuelle, ouvr. cité.

498. DUNBARR.I.M.,«Groupsize,vocalgroomingandtheorigins of language », Psychon Bull Rev, vol. 24, 2017, p. 209-212.

499. BRADBURY J. W., et VEHRENCAMP S. L., Principles of Animal Communication, ouvr. cité.

500. LEHMANN J., et al., « Group size, grooming and social cohesion in primates », Anim Behav, vol. 74, 2007, p. 1617-1629.

501. DUNBAR R., Grooming, Gossip, and Evolution of Language, Harvard Univ Press, 1996.

502. KNIGHT C., et LEWIS J., dans Human Origins, Contributions from Social Anthropology, 2017, p. 84-102.

503. KNIGHT C., et LEWIS J. D., «Wild voices: mimicry, reversal, metaphor, and the emergence of language», Cur Anthropol, vol. 58, 2017, p. 435-453.

504. DARWIN C., The Descent of Man and Selection in Relation to Sex, John Murray Ed., 1871.

505. SPOTTISWOODEC.N.,etal.,«Reciprocalsignalinginhoneyguide- human mutualism», Science, vol. 353, 2016, p. 387-389; voir aussi

le podcast de la BBC (en anglais) : https://www.bbc.co.uk/sounds/ play/b07z43f8

506. KHAIT I., et al., « Sound perception in plants », Sem Cell Dev Biol, vol. 92, 2019, p. 134-138.

507. VEITS M., et al., « Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration», Ecol Let, vol. 22, 2019, p. 1483-1492.

508. Bonjour les morses, Capitaine de la forêt, Crocodile Melody et Les chants de la mer pour Antonio ; À l’écoute de la nature – le langage secret des animaux (en trois épisodes) pour Jacques. N’hésitez pas aussi à visionner les films sur la nature commentés par David Atten- borough, et à aller sur des sites spécialisés comme ceux du Cornell Laboratory of Ornithology et de leur Macaulay Library ainsi que celui de la Sonothèque du Museum national d’histoire naturelle. Pour les amoureuses et les amoureux de chants d’oiseaux, le site Xeno-Canto est à recommander.

509. MATHEVON N., et VIENNOT É. (dir.), La différence des sexes, ouvr. cité.

510. Jevousrecommandelalecturedupetitvade-mecumLelangage inclusif : pourquoi, comment (VIENNOT É., Éditions iXe, 2018).

Votre libraire peut certainement commander le livre !

Sinon, cliquez sur un des boutons ci-dessous:

couverture.jpg
bottom of page